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FARMER RISK AVERSION TO CHANGING WEATHER

Abstract: As farmers adapt to changing climate, they modify practices and technologies to
manage evolving production risk. Understanding farmers’ risk attitudes is critical to predicting
their decisions about climate change adaptation. This research empirically estimates utility
functions to measure the risk preferences of Michigan corn-soybean farmers. We elicit from
farmers their choices between paired lotteries in both a general and an agricultural domain.
Aggregate results show that farmers are risk averse and tend to be more risk averse toward
agricultural investment decisions than general risky gambles. Estimating individual farmer
constant relative risk aversion (CRRA) utility functions reveals greater heterogeneity of risk
preferences in the agricultural domain than in the general one. Determinants of CRRA preferences
point to decreasing relative risk aversion based on crop acreage as a measure of wealth.

Introduction
Understanding farmer risk preferences is becoming more important than ever as farmers confront
climate change. Many geographic regions, including the Midwestern United States, are
experiencing extreme weather with greater frequency as sporadic drought and excessive rainfall
become more common (Chen & Ford, 2023; Ford et al., 2021). Changing weather alters the
location and shape of crop yield probability distributions (Lobell et al., 2011; Miller et al., 2021;
Ortiz-Bobea, 2021; Schlenker & Roberts, 2009; Tack et al., 2012). Farmers have always managed
production risk. But as climate changes, production risk is changing, and farmers must adapt. How
they manage risk under these shifting conditions largely depends on their risk preferences. If the
context of changing climate affects those risk preferences, then that context matters for climate
change adaptation policy.

Apart from the early work of Von Neumann and Morgenstern (1947) on risk in game theory,
much of the early thinking about decision making under risk was done by psychologists (Edwards,
1953, 1961; Tversky, 1967). Economists John Pratt (1964) and Kenneth Arrow (1965) provided

the conceptual foundation for expected utility theory (EUT) and its mathematical expression. The



functions that model risk preferences have evolved with the associated EUT. Early empirical
studies estimated mean-variance utility functions (Dillon & Scandizzo, 1978; Officer & Halter,
1968) where concavity implied risk aversion, consistent with the theoretical work of Von Neumann
and Morgenstern (1947).

Following the development of expected utility functions that exhibit constant absolute (CARA)
and relative (CRRA) risk aversion based on wealth (Arrow, 1971; Pratt, 1964), these functions and
variants were used to estimate risk aversion levels based on elicited risk preferences and risky
choices (Binswanger, 1980; Dillon & Scandizzo, 1978). The expo-power function, introduced by
Saha (1993) nests both the CARA and CRRA forms, enabling the direct modeling of risk aversion
that decreases or increases with wealth or changes in income. Holt and Laury (2002) adapted the
expo-power function for maximum likelihood estimation (MLE) using information elicited about
acceptable price levels. Innovations in choice experiments to elicit risk preferences from lottery
choices enable MLE of expected utility functions for individuals (Harrison & Rutstrom, 2008).

Economic choice experiments have shown that behavior is affected by both who makes the
choice (the experimental population) and what they are choosing (the domain). It is now well
established that for most populations of decision makers, “who” makes a difference: Field
experiments with the relevant population are more informative than lab experiments with
university students (Levitt & List, 2007). Growing evidence indicates that context matters too,
because risky choices in the abstract are often different than similar choices in a familiar domain
(Cerroni, 2020; Nguyen et al., 2022). For farmers exposed to changing climate risk, the farming
context may influence their risk preferences and risk management choices.

Agricultural economists have a long history of using choice experiments in the field to elicit

farmer attitudes toward risk. The earliest field research used simulated games against nature to



elicit indifference curves for pairs of risky choices based on general gambles (Officer & Halter,
1968). Within a decade, Dillon and Scandizzo (1978) elicited risk preferences in an agricultural
domain using a paired sample of small-scale landowners and sharecroppers. Shortly thereafter,
Binswanger pioneered experimental lottery choices connected to real payoffs (Binswanger, 1980).
Over recent decades, significant advances have enabled the estimation of expected utility functions
using random lottery pairs (Hey & Orme, 1994) and MLE from limited dependent variable data
(Harrison & Rutstrém, 2008).

Using these methodological tools, this research aims first to estimate expected utility functions
and associated risk preferences for an aggregate sample of farmers presented with lottery choices
in an abstract, general domain compared to choices in the context of agricultural investments
driven by weather risk. We focus on agricultural investments related to water management because
climate change in Michigan (where the research was conducted) is expected to make precipitation
less frequent and more intense, increasing risk of seasonal drought and excess moisture. To our
knowledge, this is the first paper to frame risk preference elicitation in the context of climate
change conditions that impact crop yields.

Second, we compare the dispersion of individual risk preferences between the general and
agricultural domains. A recent meta-analysis enables us to compare risk preferences not just for
sample means, but across individuals sampled (Garcia et al., 2024). Third, we estimate the
determinants of individual risk aversion levels for both domains. Prior studies have found risk
aversion to be affected by age (Holt & Laury, 2002; Mata et al., 2011; Meissner et al., 2023; Tanaka
et al., 2010), income (Holt & Laury, 2002; Meissner et al., 2023), wealth (Garcia et al., 2024), and
education (Donkers et al., 2001; Géachter et al., 2022; Garcia et al., 2024; Harrison et al., 2007;

Vieider et al., 2019; Von Gaudecker et al., 2011). Of special interest is the effect of wealth on risk



aversion, as wealth effects could influence policy design. Fourth and last, we suggest how the traits
of weather-driven agricultural risk aversion and its determinants can inform climate change
adaptation policy.

To preview the results, we find that farmers are risk averse. The farmers interviewed were more
risk averse for weather-driven, agricultural investment decisions than for general, context-free
lottery choices under the CARA and expo-power functions, although the difference was not
statistically significant at the 0.10 level under the CRRA function. Farmers’ individual CRRA risk
aversion coefficients were more heterogeneous for weather-driven agricultural investments than
for general lottery choices. In both domains, the degree of risk aversion decreased with cropland
acreage, a measure of wealth. In the general lottery domain, age was also a determinant, with risk
aversion increasing quadratically up to age 70 and decreasing thereafter.

These findings suggest that risk aversion affects agricultural investment decisions related to
climate change adaptation. The wide dispersion of risk attitudes implies that adaptation
communications and policies should be tailored to the degree of risk aversion. For the largest-scale
farmers (managing more than a few thousand acres), messaging about climate change adaptation
should focus on relatively risk-neutral profit maximization and returns on investment. By contrast,
messaging to smaller-scale farmers should focus on limiting down-side revenue risk.

We structure the remainder of this paper as follows. We first provide an overview of EUT and
define relevant functional forms. Next, we describe our econometric estimation methods. Then,
we explain our sampling approach, data collection process, structure of the interviews, and
experimental design. Finally, we present our results and discuss the policy implications

summarized above.



Conceptual and Empirical Framework

Conceptual Framework

The mathematician Bernoulli was the first to discuss risk preferences in 1738 (Bernoulli, 1738
[1954]). Bernoulli stated that to understand the value an individual places on something, one needs
to measure the value based on utility as opposed to price. Since then, the experimental psychology
and economics literatures have explored the concept of risk preferences extensively (Mata et al.,
2018). In both cases, risk preferences refer to the tradeoffs that individuals are willing to make
between rewards and losses. To model risk preferences, one can build upon of Bernoulli’s concept
of utility with the expected utility theory (EUT).

Von Neumann and Morgenstern (1947) illustrated how to obtain the EUT from three axioms
about decision-maker preferences: 1) that preferences can be ordered, 2) that they are continuous,
and 3) that the order is independent of irrelevant alternatives. Given these assumptions, the EUT
posits that an expected utility function exists for each decision maker based on objective
probabilities. The utility function can be nonlinear, where concavity connotes risk aversion and

convexity connotes risk preferring. We denote utility for individual » as U, (WL- j), where w;;

represents the lottery payoftj for lottery alternative i. Eq. (1) defines the expected utility for lottery
i given the exogenously defined payoff, w;;, and corresponding exogenous probability, p;;, for

each j lottery outcome.
J @)
EUy; = Z pi;jUn(wij)
=1
Since Von Neumann and Morgenstern (1947) posited the EUT, advances have been associated
with measuring the degree of risk aversion, the shape of utility functions, and the empirical

methods for estimating the corresponding risk parameters of the assumed utility functions. In order



to quantify the degree of risk preferences, one can analyze the Arrow-Pratt Indexes of Absolute
Risk Aversion and Relative Risk Aversion (Arrow, 1965; Pratt, 1964).

Two functions that are compatible with EUT and that exhibit constant risk preferences are the
constant absolute risk aversion (CARA) and constant relative risk aversion (CRRA) functions
(Pratt, 1964). CARA implies preference equivalence sets for lottery pairs that differ by an additive
shift, meaning that the preference between two lotteries is unaffected if the same amount increases
the payoffs (Wilcox, 2008). In this case, preferences between $100 versus $120 are the same as
$200 versus $220 since the same additive term has increased all outcomes. Meanwhile, CRRA
preferences imply preference equivalence sets for lottery pairs that differ by a proportional shift
(Wilcox, 2008). Hence, under the CRRA assumption, the preferences for $100 versus $200 are the
same as $200 versus $400, given that the same multiplicative term increases both outcomes.

We follow common practice in using the negative exponential function to model CARA
preferences, with the risk preference parameter represented by o, as shown in Eq. (2). We utilize
the power function to model CRRA preferences, with the risk aversion parameter represented by
rin Eq. (3).

Uw)= —e v 2

Wl—r (3)
1—

Uw) =

For the negative exponential function defined by Eq. (2), the Arrow-Pratt Index of Absolute Risk
Aversion reduces to the constant term of a. Similarly, for the power function defined by Eq. (3),
the Arrow-Pratt Index of Relative Risk Aversion reduces to the constant term of ». Under both
CARA and CRRA, a negative risk aversion parameter represents risk-loving behavior, a positive
risk parameter represents risk-averse behavior, and preferences approach risk neutrality as the risk

aversion parameters approach zero.



Previous work relied on nonlinear approximations of the utility function (Kaylen et al., 1987;
Lambert & McCarl, 1985) or non-nested tests (Vuong, 1989) to choose the best model fit between
CARA (Eq. 2) and CRRA (Eq. 3) preferences. Saha (1993) introduced the expo-power utility
function, a flexible form that can model relative and absolute risk aversion. Holt and Laury (2002)
modified Saha’s (1993) function to the version shown in Eq. (4) that demonstrates alternative risk
preferences based on the parameter signs and values. The expo-power function in Eq. (4) allows
for nested tests, considering that it represents CARA as r = 0 and CRRA as a — 0. These
reductions can be shown by calculating the associated Arrow-Pratt Indexes, which are provided in

the supplemental material.

1—exp (—aw'™) 4)
a
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When the expo-power function cannot be simplified to one of the nested CARA or CRRA
functions, it displays risk aversion that changes over the magnitude of the stakes of the risky
gambles.

Both the parameter a from the exponential function (Eq. 2) that represents CARA and r from
the power function (Eq. 3) that represents CRRA can be found in the nested expo-power function
(Eq. 4) that provides a flexible form containing both a and r. However, we cannot
straightforwardly compare these parameter estimates, because the a of the nested expo-power
function (Eq. 4) does not directly represent the Arrow-Pratt Index of Absolute Risk Aversion, nor
does the r from Eq. (4) represent the Arrow-Pratt Index of Relative Risk Aversion. The a and r
estimated for the expo-power function must be plugged into the corresponding equations to

calculate the Arrow-Pratt Indexes of Absolute and Relative Risk Aversion.



Empirical Framework

A fundamental challenge in measuring risk attitudes is that we cannot observe an individual’s
utility function directly. However, we can make statistical inferences from the preferences revealed
by how a decision maker makes choices. While there are various elicitation methods, we utilize
the random lottery pair method as it is easy to explain to participants, applicable to production risk,
and incentive-compatible (Charness et al., 2013; Harrison & Rutstrom, 2008).

The random lottery pair method presents subjects with one pair of lotteries at a time, and the
participants must make multiple choices in a random sequence (Hey & Orme, 1994). Risk
preferences elicited using lotteries have been shown to predict market behavior more reliably than
values elicited using self-reported psychometric scales (Pennings & Smidts, 2000). Unlike the
multiple price list method popularized by (Holt & Laury, 2002), one cannot directly infer risk
preferences from the responses for random lottery pairs. Researchers must use estimation methods,
such MLE, to calculate risk preferences (Harrison & Rutstrom, 2008). The random lottery pair
method allows us to estimate risk preferences in the context of production risk that is the focus of
this research, while the multiple price list method focuses on prices (Anderson et al., 2007).

The random lottery pair method enables the econometric estimation of functions U, (WL- j), such
as Eq. (2-4), for decision maker n from choices between pairs of risky gambles. In this research,
we offer two sets of risky gambles, where w;; represents the lottery payoff j for lottery alternative
i. The first set of lottery pairs comprises context-free choices where the decision maker must
choose between two lotteries, each of which has two payoftfs with associated probabilities. The
second set of lotteries involves choices in an agricultural domain where participants make

decisions regarding investments to manage weather-driven, crop yield risk.



The random utility framework provides the theoretical underpinning for econometric
estimation. It models an individual’s preferences between the available alternatives as the choice
that results in the highest expected utility for the individual (McFadden, 1973). In this framework,
the dependent variable is the binary choice, where y; = 1 indicates the lottery chosen. The
probability that decision maker n chooses alternative i instead of alternative k& depends on the
exogenous payoffs, w;; and wy j, and probabilities, p;; and py j, associated with each lottery choice.

P(y; = 1| wyj, pij, W, Pij) = Prob[EU,; > EUp] Vi#k )

Because utility is not directly observable, one can only predict the probability that a decision
maker selects a given lottery. We apply MLE to a binary response model using a choice probability
equation. We then estimate the parameters of the utility function that maximize the probability that
the observed choice of the individual maximizes their expected utility compared to the option they
did not choose. In particular, we maximize a function of the difference between expected utilities
for each binary lottery choice. We can rewrite Eq. (5) as

P(y = 1| wyj, pij, Wi, Pxj) = Prob[EU,; — EUp > 0] Vi#k (6)

The utility functions of Eq. (2-4) each enter the EUT function of Eq. (1) separately to create
the latent index. The latent index is then linked to the observed choices using a standard cumulative
normal distribution function ®(EU,,; — EU,;). We construct a log-likelihood equation (Eq. 7) to
obtain parameter estimates given the bivariate probit index function. The log-likelihood equation
depends upon the utility theory being evaluated, the functional form of the utility function, and an
indicator variable that specifies the lottery choice from the set. Therefore, for each decision maker,
n, we can estimate risk preferences from lottery choices as follows:

LL(Uy(W); Wij, Dijy Wij» Diej) = (1)

Li[In(P(EUp; = EUpi)) * I(y = 1) + In(P(=(EUy; — EUpi))) *I(y = 0)] V i# k



where I(.) is the indicator function and y indicates the lottery choice. Through MLE, we can
estimate @ from Eq. (2), # from Eq. (3), or @ and # from Eq. (4), depending on which utility
function is used for the latent index.

Once we have parameterized Eq. (2-4), we can evaluate which utility model best suits each
lottery domain. For the aggregate sample we compare results from all three expected utility
models. For evaluation of the distribution of individual farmer risk aversion levels, however, we
first select a preferred model using both theoretical and empirical criteria. From a conceptual
perspective, Lau (1986) identifies five key criteria: theoretical consistency, factual conformity,
computational facility, flexibility, and domain of applicability. To these we add parsimony of
parameters and readily interpreted parameters (Frank et al., 1990).

The exponential function (Eq. 2) that represents CARA, the power function (Eq. 3) that
represents CRRA, and the nested expo-power function (Eq. 4) that provides a flexible form were
all constructed to provide theoretical consistency and factual conformity under EUT. For the
computational facility criterion, the single-parameter exponential (Eq. 2) and power (Eq. 3)
functions allow for more straightforward model estimation and parsimony of parameters.
However, the complexity of the expo-power function (Eq. 4) allows for greater flexibility and more
complex risk preferences than CARA or CRRA, giving it a broader domain of applicability.
Finally, the CARA and CRRA models offer constant risk aversion parameters that are more readily
interpreted.

We apply nested choice-of-model tests as empirical measures of goodness-of-fit to expected
utility functions estimated individually (for each farmer) as well as in aggregate (for the whole
sample). Specifically, we evaluate whether the more complex expo-power model has added

explanatory power that justifies its use over the simpler CARA or CRRA models by applying the
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Wald test (Wald, 1943) of the null hypotheses r = 0 (implying CARA preferences) and « = 0
(implying CRRA preferences).

Our objectives in evaluating the attitudes of Midwestern U.S. farmers toward weather risk are
to test two exploratory hypotheses. The first tests the importance of the domain or context. In null
form, it states that risk preferences are the same regardless of context, no matter whether elicited
with a general lottery or with weather-related agricultural lottery data.! Using the frequency
distribution of individual estimates, we select a preferred expected utility functional form and
consider whether the context affects the mean level of risk aversion as well as the median and the
spread. The literature abounds with evidence that contextual instructions can matter in
experimental economics (Alekseev et al., 2017; Meraner et al., 2018; Rommel et al., 2019), so we
wished to determine whether a weather-driven, agricultural yield risk context affects farmer risk
preferences.

Our lottery experiment can be defined as a framed field experiment. Framed field experiments
present subjects with risky decisions in their areas of expertise in a natural but controlled setting
(Harrison & List, 2004). By adding context familiar to the participants, framed field experiments
often introduce the background, exogenous risks, and endogenous risks explicitly presented within
the experiment (Eeckhoudt et al., 1996).

Our second null hypothesis is that risk preferences are inherent and thus unrelated to potential

determinants that are externally observable. To estimate the effects of decision-maker traits on

! The psychology and economics literature have developed cumulative prospect theory (CPT) as an alternative to
EUT (Bocquého et al., 2014; Finger et al., 2024). CPT can accommodate more nonlinearities given the additional
parameters. However, the estimation therefore requires many lottery choice observations. Given we were already
comparing two lottery domains, we opted not to risk inducing cognitive fatigue by including additional lottery
questions.
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decisions, we include a vector of traits, X' = [X1 e X j], in the MLE equation that estimates the
risk aversion coefficient(s). For the CRRA risk aversion coefficient, this would look like,

F= Byt BX ®)

We are particularly interested in whether risk aversion changes with wealth, as there is prior

evidence for risk aversion decreasing with wealth, that wealthier individuals have a safety net

(Garcia et al., 2024). Our study uses income intervals, acres operated, and debt-to-asset ratio

intervals to proxy for wealth.

Data

This framed field experiment is based on interviews of Michigan crop farmers at county-level
meeting places, including restaurants and county offices of Michigan State University Extension.
We selected interviewees from the population of Michigan corn-soybean farmers who operated at
least 300 acres in 2022 and devoted a portion of this land to growing corn for grain. We chose a
minimum of 300 acres to ensure that the producers relied on farming as a major source of income
(USDA-NASS, 2022). As such, our participants would take seriously risk management to
safeguard their income. We also wanted participants to be the primary farm decision maker on
crop production, as we asked questions about corn production and commodity prices. Michigan
State University Extension educators helped with recruitment, resulting in 44 farmer interviews
between September 2022 and April 2023.

We conducted computer-assisted, in-person interviews, with the general lottery directions
presented to the group before individual completion of the online survey with Qualtrics. Graduate
students from the Department of Agricultural, Food, and Resource Economics at Michigan State
University facilitated the personal interviews by answering questions and assisting with navigating

the online survey. The first and second portions of the study comprised the lottery-based
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experiments. The first section contained 25 binary lottery choices in a general domain, while the
second section presented 18 lottery choices in the context of farm investment decisions related to
weather-driven crop yield risk.

We presented the 25 general lottery pairs in random order to prevent ordering effects; they
included payoffs that were both positive, both negative, and a mix of the two. The general lottery
experimental design is based on Pedroni et al. (2017) to ensure adequate variation across payoffs
and probabilities. Each general lottery had two potential outcomes denoted by bar graphs to
visually represent the corresponding probabilities for each outcome. For example, Figure 1 depicts
that Lottery A offers 40% odds of winning $100,000 versus 60% odds of losing $80,000, while

Lottery B offers 25% odds of winning $10,000 versus 75% odds of losing $40,000.

Lottery A

m $100,000 -$80,000

Lottery B

m 510,000 -540,000
Figure 1: Example of visual representation of lottery bar graphs.

Before beginning the general lottery experiment, we provided each participant with a $50
participation payment plus a $40 endowment from which they could gain or lose money, given
that the lottery outcomes included negative payoffs. We informed participants that the computer
would randomly select one of the questions to determine a payoff, with a conversion from

hypothetical dollars to real money of $4,000 to $1. In extreme cases, the payoff could double or
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erase the $40 endowment. The supplemental information includes the complete set of general
lotteries, the experimental procedures, and example questions for each payoff type.

The agricultural lottery experiment framed the 18 lottery choices as investment decisions to
mitigate revenue loss due to excessive moisture or drought. We informed participants that payoffs
were based on revenue of $24,000 for the hypothetical 40-acre field. The payoffs in the agricultural
lottery domain were grounded in potential corn yield outcomes under Michigan production
conditions, so the design lacks the full orthogonality of the general lottery payoffs. The lotteries
offered choices between taking no action or investing in drainage, irrigation, drought-tolerant
seeds, or crop insurance. For example, a participant had a 30% chance of their hypothetical field
flooding in the upcoming season and a 70% chance that the field does not flood. They could invest
in tile drainage at 60ft spacing with an annualized cost of $1,600 for the 40-acre field. If the
participant chose not to invest in tile drainage, they had a 70% chance of the flood not occurring,
corresponding to receiving the total gross income of $24,000 for the 40-acre field. They also had
a 30% chance of the flood occurring, in which case they would hypothetically receive $20,000 due
to crop yield loss. The payoffs related to investing in tile drainage at 60-foot spacing reflected a
70% chance of receiving $22,400 (the gross crop revenue minus the annualized investment cost if
the flooding event does not occur) versus a 30% chance of receiving $21,200 (the gross crop
revenue less the annualized investment cost and a smaller percentage of crop yield if flooding does
occur). Given the high cost associated with irrigation, we also included four irrigation lottery
questions with a higher baseline crop revenue of $48,000 to reflect higher potential mean yields.

Each investment category had a 2x2 experimental design with combinations of high and low
probability of adverse weather outcomes and high and low investment costs to provide variation

in the lottery questions. The one exception to the 2x2 design was drought-tolerant seeds. There

14



was only one level of investment intensity (to buy the seed), but there was still a high and a low
probability question while holding intensity constant. These combinations resulted in a set of 14
agricultural lotteries with four questions relating to tile drainage, four relating to crop insurance,
two about drought-tolerant seeds, and four for irrigation investments. With the four additional
irrigation investments at a higher revenue level, we have a total of 18 agricultural lotteries.? We
consulted with Michigan State Extension agents to ensure realistic investment costs and intensities.
The proportion of crop yield loss in the event of adverse weather without investment was taken
from Li et al. (2019).

To help with participant understanding, we grouped the questions for each investment type
into a block of questions. For example, we grouped all drainage questions within a block. We then
randomized the order of the questions within the block, so participants saw the drainage questions
together in a random sequence. We also randomized the order of the blocks so that one individual
might see the block of drainage questions first, while another may see the block of drainage
questions as their third investment type. We include the complete set of agricultural lotteries in the
supplemental information, along with example questions for each investment type. Given that the
subject sample of 44 farmers completed 25 general lottery questions and 18 agricultural lotteries,
the panel data include 1,100 and 792 observations under each lottery type.

The sample broadly represents Michigan corn-soybean farms that rely heavily on farming for
household income. While the sample was selected purposively, participant farms are spread across
the southern half of Lower Michigan, which is the region where corn and soybean are cash crops.

Sample traits largely align with the 2022 Michigan Census of Agriculture (USDA-NASS, 2024a).

2 We have 18 agricultural lotteries as opposed to 25 to minimize cognitive fatigue. The agricultural lottery questions
required participants to read background information to put the lottery choice into investment contexts. Therefore,
we went with the 2x2 design experimental design.
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Table S3 in the supplemental information provides a detailed comparison of sample characteristics
to the 2022 Michigan Census of Agriculture. We have a similar racial composition compared to
the state-level data for Michigan on the North American Industry Classification Code referring to
oilseed and grain farming. Our sample contains more males (98%) than the census (77%), which
may be because we asked to speak with the primary decisionmaker on crop production. Several
participants remarked that their wives are business partners who handle the finances as opposed to
crop production. Our sample also contains more producers in the 35-44 age group than the 2022
census. By design, the farms in our sample are significantly larger, given that we required
respondents to operate 300 acres or more, whereas 57% of Michigan farms had under 200 acres.
Previous literature has found that age, education, and income or wealth can impact risk
aversion. Given that it is challenging to measure wealth directly, we proxy wealth with income,
acres in operation, and debt-to-asset ratio. Table 1 provides a breakdown of the main covariates of
interest for data analysis. Age and acres in operation are continuous variables, while education,
income, and debt-to-asset ratio are categorical variables. The education levels are defined as less
than high school, high school diploma, some college, associate’s degree, bachelor’s degree, and
master’s degree or higher. Income and debt-to-asset ratio are defined as categorical variables, with
income categories ranging from less than $25,000 to more than $1,000,000 and debt-to-asset ratio
categories ranging from capital debt between 0% to 9% of current asset value up to capital debt

greater than current asset value. Fuller details appear in supplemental information Table S3.

16



Table 1: Summary Statistics for Main Covariates

Variable Units Average Median Minimum Maximum
age years 56 57 25 92
. . Associate Associate High school Graduate
education  categorical 4
degree degree diploma degree

acres In acres 2,420 1,650 335 17,000
operation

: . $200,000- $200,000- $25,000-

income categorical $500.000 $500.000 $50,000 $1,000,000<

Gebt0- — tegorical  2506-32%  25%-32% 0%-9% 100%
asset ratio

Figure 2 depicts the counties where interview participants operate most of their acres. Given

our requirement that they grow corn for grain, we recruited farmers in the lower half of Michigan.

Corn produced in the northern half of Michigan is primarily for dairy silage.

0 25

e — I

100

——

Figure 2: Counties represented in our sample indicated by our participants as the county where
they operate most of their acres. (Map created by Justin Anderson.)

Results

We find that the farmers sampled were risk averse across both domains and all expected utility

models. Under two of the three expected utility functions, farmers were more averse to risk related
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to weather-driven crop yield management than to general risky gambles. Analysis of individual
farmer risk preferences found greater heterogeneity of risk preferences in the weather-driven
agricultural context than in the general one.

Starting with the aggregate picture, Table 2 shows the whole-sample probit MLE results
given the CARA exponential (Eq. 2), CRRA power (Eq. 3), and the nested expo-power (Eq. 4)
functions with data from both standard, general lotteries and lotteries based on weather-driven
agricultural investment decisions. In both lottery domains, the CARA & coefficients are positive,
displaying risk aversion. Compared to the general lottery CARA coefficient, the one for weather-
driven agricultural investments is larger by an order of magnitude, implying that farmers display
higher risk aversion when making decisions about weather risk to crop revenue. While both of the
CARA model & estimates are quite small, these magnitudes are typical for this model (Raskin &

Cochran, 1986).

Table 2: Whole-Sample Probit Models of Lottery Choices Given CARA Exponential,
CRRA Power, and Nested RRA and ARA Expo-Power Functions.

CARA CRRA Nested RRA and ARA
a 7 a 7
7.67e-6*** 0.862*** -0.295*** 0.852***
General
(3.79e-7) (0.007) (0.002) (0.003)
Agricultural 4.60e-5*** 0.890*** 0.041*** 0.641***
g (6.36e-7) (0.023) (0.007) (0.029)
Log-pseudolikelihood
General -749.37 -865.01 -694.85
Agricultural -693.09 -662.61 -662.34

Note: Standard errors in parentheses, *** p < 0.01, ** p <0.05, * p<0.10

The aggregate CRRA results likewise show risk aversion in both lottery domains. However,

their 95% confidence intervals overlap, so we cannot reject the possibility that the risk aversion
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coefficients, #, are equal. The magnitude of these CRRA  estimates matches estimates in the
literature (Lilleholt, 2019).

The whole-sample results for the expo-power functional form (Table 2) indicate that
participants display both relative and absolute risk aversion. Notwithstanding the negative
coefficient estimate for a in the expo-power function®, the associated index of absolute risk
aversion (Eq. S2) is positive over the full range of lottery choice values offered (Figure S13 in
Supplemental Information). Indeed, the expo-power estimates of the index of relative risk aversion
(Eq. S3) over the range of lottery choice values reveals that are not only are they positive in both
domains, but they are also much larger in the agricultural than the general domain.

In order to compare levels of risk aversion between the two domains at the individual level,
we first conducted choice-of-model tests among the three expected utility functional forms. Wald
tests gave evidence for preferring the CRRA form for nearly all individuals in both the general and
the weather-driven agricultural lotteries (see Tables S4, S5, and S6, as well as accompanying text
in Supplemental Information). The CRRA model ranks first, followed by the expo-power model,
while the CARA model places last. Given the evidence from these individual-level analyses, we
focus the remainder of the Results section on estimates from the CRRA power model of
exponential utility.

In comparing the frequency distributions of the CRRA 7 coefficient estimates in the two
domains, the most striking feature is the much wider dispersion of risk aversion levels in the
context of weather-driven agricultural lotteries. Whereas the 7 values range from 0.68 to 0.97 in

the general lotteries, they span 0.56 to 1.02 in the weather risk-driven agricultural lotteries (Figure

3 Note that the interpretations of the coefficient values of the expo-power utility function are not equivalent to those
of the exponential or power utility functions, given the Arrow-Pratt Indexes for the expo-power function do not
reduce to constant terms. Hence the need to compute values, as in Figure S13.
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3). The two frequency distributions of CRRA 7 coefficient estimates with bin sizes of 0.025 differ
at the 0.10 significance level, based on a y? test. Reflecting this, the standard deviation of the #
estimates is 0.066 for the general domain versus 0.125 for the weather-driven agricultural one.
Central tendencies differ little between the general and agricultural frequency distributions in
Figure 3. This finding should not surprise, given the small difference between CRRA 7 estimates
from the aggregate sample in Table 2. The median 7 values for the general and agricultural
distributions of individual farmer estimates are 0.855 and 0.843, respectively. The mean from the
agricultural domain is also slightly lower (0.810) than the general domain (0.843), reflecting the

left-skewed tail in the weather-driven agricultural context (Figure 3).

Distribution of Estimated r Values for CRRA Model in the

General Lottery Domain Agricultural Lottery Domain
81 8-
71 71
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Figure 3: A comparison of estimated r values at the individual-level for both lottery domains.

To understand what is driving differences in participants’ risk aversion measures, we test our

second hypothesis and estimate CRRA risk preference parameters as functions of demographic
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and farm characteristics following Eq. (8). The preferred specification shown in Table 3 was the
most parsimonious that was directly comparable across general and agricultural lottery samples.

(Results for alternative specifications are provided in supplemental information Tables S8 and S9.)

Table 3: Probit Model of Lottery Choices Given CRRA Power Function, 44 Michigan
Corn-Soybean Farmers, 2022-23.

General Lottery

Agricultural Lottery

Constant ~ 0:862"™ 0.556%** 0.890*** 0.759*
(0.007) (0.089) (0.023) (0.446)
age L 0.009*** N -0.006
’ (0.002) (0.016)
2 -6.39e-5*** 6.45e-5
age
(1.89-5) (1.61e-4)
education level -0.003 0.032
(0.005) (0.019)
acres operated -3.60e-6™"* -1.70e-5***
P (1.35¢-6) (6.02¢-6)
income 0.007 0.039
(0.005) (0.029)
Log-
-865.01 -849.29 -731.43 -702.12

pseudolikelihood
Note: Standard errors in parentheses, *** p <0.01, ** p <0.05, * p<0.10

Both the general and the agricultural lottery results reveal that demographic and farm resource
variables significantly influence risk preferences (Table 3). But both models also reveal clear risk
aversion inherent to the decision maker, as captured by the constant terms in the specifications that
include covariates.

Two farmer traits influenced the risk aversion estimates. Wealth mattered in both lottery
domains, with acres operated decreasing the degree of relative risk aversion in the preferred model.
Although, the acres operated effect was not robust across all specifications, it was significant and

negative in the two agricultural models where it appeared in linear form as well as one of the two
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general models where it appeared in linear form. Our sample’s average acreage in operation is
2,420 acres, and the median is 1,650 acres. The coefficient estimates in Table 3 imply that an
increase of 1,000 in acres operated is, on average, associated with a .65% decrease in risk aversion
in the general lottery domain and a 2.24% decrease in the agricultural lottery domain. In both
lottery domains, the levels of education and income do not impact risk aversion estimates.

The general lottery results show a clear quadratic age effect across all specifications, though
the agricultural lottery results do not. The results for the general lottery domain imply that on
average, risk aversion increases by about 2.33% as a farmer ages from 50 to 60 years old. However,
the quadratic term means that risk aversion is increasing at a decreasing rate. Once the risk aversion
estimate reaches its maximum at 70 years old, an increase in the average farmer’s age from 70 to
80 years results in a 0.67% decrease in risk aversion.

With and without covariates included, the results in Table 3 indicate that we cannot reject the
possibility that the risk coefficients, r, are equal across lottery types at a 5% significance level. The
coefficient estimates in Table 3 along with evidence from the dispersion of risk aversion levels
suggest that differences between general and agricultural domains are driven by individual traits,
notably age and wealth. This could explain why we see stronger evidence that farmers are more
risk averse in the agricultural domain for the aggregate CARA and expo-power functions as shown

in Table 2.

Discussion and Conclusion

In order to understand farmer risk attitudes in the context of changing climate, we compare risk
preferences elicited from general versus weather-driven agricultural lottery domains. The general
domain simply asks respondents to choose between pairs of risky gambles. Given predictions of

increased incidence of seasonal drought and excess moisture, the agricultural domain focuses on
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investments in water management, including drainage tile to remove excess water, irrigation and
drought-tolerant seed varieties to manage insufficient water, and crop insurance to provide revenue
protection.

We find that the climate context matters. In our aggregate sample of 44 respondents, farmers
responded differently to risk in the context of weather-driven agricultural risk than in the general,
abstract domain. While not evident under the CRRA function, they showed greater risk aversion
in the agricultural domain under CARA function (Table 2). Under the expo-power function, where
risk aversion levels vary with lottery payout levels, farmers consistently displayed greater risk
aversion in the context of weather-driven agricultural investments compared to the general domain.
This finding reinforces the message from Hudson et al. (2005), who found agricultural producers
in Mississippi to be averse to crop yield and price risk, but risk-seeking behavior in a context-free
auction. Our evidence about risk behavior differences between weather-driven agricultural and
general settings is also consistent with Menapace et al. (2016) who determined that Italian apple
producers’ crop insurance purchases were better explained by risk preferences elicited from
lotteries in the context of farm income explain farmer than elicitations from lotteries with no
agricultural framing.

On risk attitudes in the whole-sample analysis, we find first that Michigan corn-soybean
farmers are risk averse across all three expected utility functions evaluated (constant absolute risk
aversion [CARA], constant relative risk aversion [CRRA], and expo-power). This finding is
consistent with the preponderance of evidence from past studies that elicited risk attitudes of
farmers in the United States (Barham et al., 2014; Hellerstein et al., 2013) and in Europe (Iyer et
al., 2020; Meissner et al., 2023).

By estimating individual utility functions, we can compare the distributions of risk attitudes as
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well as the determinants of those attitudes between general and climate-related agricultural
domains. Based on prior choice-of-model tests, we found that the CRRA function could not be
rejected as equivalent to the expo-power function, whereas the CARA function was
overwhelmingly rejected as less informative.

The frequency distribution of CRRA risk aversion coefficients was broader for agricultural
investments than for general lottery choices. With 7 coefficient estimates ranging 0.68 to 0.97 in
the general lotteries and 0.56 to 1.02 in the weather risk-driven agricultural lotteries, our findings
correspond to the risk averse and highly risk averse ranges where Holt and Laury (2002) found
45% of their subjects’ choices to fall in their 20x stakes lottery. The ranges overlap heavily with
seven of the ten distributions of European farmer risk preferences reported by Garcia et al. (2024),
although the mean 7 values here are higher (more risk averse) than the means reported there.

Upon re-estimation of CRRA coefficients as a function of age, education, wealth (proxied by
acres operated), and income, we find that wealth matters in both the general and the agricultural
domains. Specifically, we find decreasing relative risk aversion as a function of acres operated.
This suggests that operators of larger farms, which are less vulnerable to bad outcomes, exhibit
less risk aversion. Their level of risk aversion decreases faster for risky agricultural decisions than
for general ones (albeit from a higher starting level, represented by the constant in these models)
(Table 3). Other studies have also found evidence that wealth and risk aversion are negatively
correlated (Holt & Laury, 2002; Meissner et al., 2023; Wik et al., 2004).

In the general domain (but not in the agricultural one), we find also that risk attitudes evolve
with age. Risk aversion increases at a decreasing rate up to age 70, declining after that point. This
pattern has been found elsewhere in the United States and in Spain (Ackert et al., 2009; Picazo-

Tadeo & Wall, 2011), and it may be related to changing financial goals and vulnerability over a
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farmer’s life cycle. A young farmer may aim to expand the farm operation, taking on substantial
mortgage debt while also facing the financial obligations of a growing family. Farmers who have
persisted in business past age 70 may have accomplished many of their goals and become more
tolerant of financial risk. Additional work has separated risk preferences and loss aversion, with
Tanaka et al. (2010) finding a negative relationship between age and risk aversion while Meissner
et al. (2023) find a positive relationship between age and risk aversion but a negative relationship
with loss aversion.

We do not find a significant relationship between education and risk preferences. This could
be due to its mixed effect on risk attitudes, with some studies finding positive effects (Vieider et
al., 2019; Von Gaudecker et al., 2011) while others have found negative effects (Donkers et al.,
2001; Géchter et al., 2022; Harrison et al., 2007).

Two features of the experimental design invited robustness checks. First, the general lottery
questions always preceded the agricultural ones. In order to determine whether the order of
presentation affected risk aversion coefficient estimates, we estimated individual CRRA
parameters from the first 13 general lotteries presented and compare them to those from the last
12 presented in Table S7 of the supplemental material. We find no evidence of ordering effects.
Second, the general lotteries included losses among the outcomes, whereas the agricultural
lotteries did not. To evaluate the effect of omitted losses on coefficient estimates, we estimated the
whole-sample CRRA parameter from the subset of 10 general lotteries where all outcomes were
positive amounts. The estimated value of 0.820 (s.d. 0.012) is lower than both the general CRRA
estimate of 0.862 (0.007) and the agricultural CRRA estimate of 0.890 (0.023). While this finding
indicates that omission of losses has a significant effect on coefficient estimates, that effect is to

depress them. As the omission of losses leads to underestimation of CRRA risk aversion and one
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key finding is that risk aversion is slightly greater in the weather-driven agricultural domain, it
appears that this finding would have been even stronger had we included losses in the agricultural
lotteries.

The chief limitations of this research stem from the sample, which is small and not randomly
selected. This is not uncommon for complex economic experiments on risk attitudes, especially
when targeting a specific group of individuals such as farmers (Brunette et al., 2013; Cerroni,
2020; Hellerstein et al., 2013; Tevenart & Brunette, 2021). However, it remains a shortcoming,
despite being mitigated by reasonably good tracking with the broader population of Michigan corn-
soybean farmers as reported in the 2022 Census of Agriculture. The study was limited to corn-
soybean farmers in Michigan, but growers of these crops have a large footprint in the wider scheme
of things, as grain and oilseed farmers manage two-third of cropland in Michigan (67%) and in the
United States as a whole (67%) (USDA-NASS, 2024a, 2024b).

As agricultural policy makers contemplate how to support farmers in confronting climate
change, these findings offer three insights. First, farmers appear slightly more averse to risk in the
context of decisions about agricultural investments related to climate risk than in a general domain
that does not bear on their livelihood. Second, risk attitudes toward agricultural investments vary
widely, so there is no one-size-fits-all policy prescription. Third, farmers display decreasing
relative risk aversion: Those who operate large acreages are closer to being risk-neutral profit
maximizers than smaller scale farmers. Hence, policies aimed at smaller scale farmers may build
upon the assumption of risk aversion. However, policies aimed at large scale farmers—who
operate a large share of U.S. acreage in commodity crops like corn and soybean (MacDonald et

al., 2018)—should focus more on expected profitability, rather than down-side risk.

26



Future research into farmer risk attitudes and climate change adaptation would benefit by both
broadening the data on risk preferences and applying the results to subjective probability
distributions. The work reported here could be broadened by extending data collection over a wider
agricultural geography where farmers face more varied climate conditions. A larger data set with
greater data variability would likely enable testing a wider range of utility functions that includes
variants of prospect theory (Eisele et al., 2021; Kahneman & Tversky, 1979; Tversky &
Kahneman, 1992; Wakker, 2010). A more diverse geography could also potentially parse more
clearly the determinants of risk attitudes.

A second valuable extension of this research would be to apply its estimates of risk aversion
to climate change-related decisions. Subjective probability distributions of crop yields play an
important role in adaptive management decisions. Past research by Menapace et al. (2013) found
farmers’ risk attitudes to affect how they estimated the probability of crop loss from pests. A
worthwhile extension would be to evaluate whether and how farmer risk attitudes affect the way
they perceive climate-driven changes in crop yield probability distributions.

Moving on to how risk aversion affects climate change adaptation decisions, how and how
much does farmer risk aversion affect adaptive management decisions related to climate change?
Studies have analyzed the relationship between risk aversion in decision making and technology
adoption (Barham et al., 2014; Gilboa et al., 2008; Marra et al., 2003; Marra & Carlson, 2002). An
important next step is to explore how risk attitudes affect the adoption of climate change adaptation

technologies.
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SUPPLEMENTAL INFORMATION
S1: Lottery Experiments

Experimental Procedures

Before beginning the general lottery-based experiment, we presented the participants with a
consent form that provided information regarding the survey, participation payment, voluntary
participation, and confidentiality of responses. The survey's introduction includes two general
lottery examples to introduce the lottery framework and explain the conversion for the lottery
payment. In addition to the $50 participation payment, we provide participants with a $40
endowment from which they can earn or lose money. We present the 25 general lottery pairs in a
random order to prevent ordering effects, and they include payoffs that are both positive, both
negative, and a mix of the two. After completing the general and agricultural lottery sections, the
random number generator built into Qualtrics selects a number from one to 25 to decide the general
lottery question. We then see whether the participant chooses Lottery A or B. Qualtrics also
generates a random number between one and 100 to represent the binding outcome within the
chosen lottery.

For example, suppose the randomly drawn lottery question includes Lottery A, which offers
50% odds of winning $50,000 versus 50% odds of winning $20,000, and Lottery B, which offers
20% odds of winning $100,000 versus 80% odds of winning $10,000. We see that the participant
selected Lottery B, depicted below. If the randomly generated outcome number falls between 1
and 20, the first payoft of $100,000 is binding. Similarly, if the randomly generated outcome

number falls between 21 and 100, the second payoff of $10,000 is binding.



Lottery B

m -

m $100,000 = $10,000

Figure S1: Example of general lottery outcome.

We divide the experimental payoffs by 4,000 to convert the lottery outcomes to real dollars
that impact the participants’ final payment. Therefore, by choosing Lottery B of the selected
question, with an outcome number of 11 and the binding payoff of $100,000, the participant would
receive $25. If the binding outcome is negative, we would subtract the converted payoff from the
$40 endowment. The participants can potentially lose all of the $40 endowment or win up to $40
in addition to the endowment, meaning the minimum payment is the $50 participation payment,

and the maximum is $130.
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Table S1: General Lottery Set

Lottery A Lottery B
Payoff Probability Payoff Probability Payoff Probability Payoff Probability
$10,000 35% $90,000 65% $20,000 30% $50,000 70%
$160,000 15% $60,000 85% $110,000 70% $70,000 30%
$80,000 20% $20,000 80% $50,000 75% $10,000 25%
$120,000 80% $40,000 20% $150,000 20% $80,000 80%
$40,000 65% $10,000 35% $25,000 70% $15,000 30%
-$90,000 65% -$10,000 35% -$50,000 70% -$20,000 30%
-$160,000 15% -$60,000 85% -$110,000 70% -$70,000 30%
-$80,000 20% -$20,000 80% -$50,000 75% -$10,000 25%
-$120,000 80% -$40,000 20% -$150,000 20% -$80,000 80%
-$40,000 65% -$10,000 35% -$25,000 70% -$15,000 30%
$100,000 40% -$80,000 60% $10,000 25% -$40,000 75%
$80,000 60% -$100,000 40% -$10,000 25% $65,000 75%
$20,000 20% -$100,000 80% -$40,000 80% -$110,000 20%
-$20,000 20% $100,000 80% $40,000 80% $110,000 20%
-$30,000 60% $40,000 40% -$15,000 30% $5,000 70%
$80,000 5% $20,000 95% $50,000 50% $10,000 50%
$80,000 10% $20,000 90% $60,000 50% $10,000 50%
$100,000 95% $40,000 5% $120,000 40% $50,000 60%
$100,000 90% $40,000 10% $120,000 45% $50,000 55%
$50,000 50% $20,000 50% $100,000 20% $10,000 80%
-$80,000 5% -$20,000 95% -$50,000 50% -$10,000 50%
-$80,000 10% -$20,000 90% -$60,000 50% -$10,000 50%
-$100,000 95% -$40,000 5% -$120,000 40% -$50,000 60%
-$100,000 90% -$40,000 10% -$120,000 45% -$50,000 55%
-$50,000 50% -$20,000 50% -$100,000 20% -$10,000 80%

36



General Lottery Example Questions

In the first section of this interview, we will present you with 25 pairs of risky
gambles. In each case, we will ask which one you prefer. There will be options
with all positive payoffs, all negative payoffs, or a mix of positive and negative
payoffs.

For example,

Lottery A might offer 30% odds of earning $20,000 versus 70% odds of losing
$40,000, while Lottery B offers 30% odds of earning $10,000 versus 70% odds of
losing $30,000.

We then ask, “Which lottery do you prefer?”

O
Lottery A
m 520,000 -$40,000
O

Lottery B

70%

m $10,000 © -$30,000

We would like you to think about these gambles like real investment choices in
your farm business. So to encourage you to think that way, once we are done with
all the gambles, we will pay you real money based on one of your answers. No
one will know ahead of time which outcome will be selected.

We will do this in two steps: First, the computer will randomly pick one of the 25
questions; next, the computer will randomly choose one of the two outcomes.

We will then pay you an additional $40 plus any gain from that outcome or minus
any loss from that outcome. Because our budget is limited, we will be dividing the
gamble sums by 4,000 (so a $4,000 lottery payoff becomes a $1.00 payoff with
us).

Figure S2: Survey instructions and an example for general lottery questions.
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Which lottery do you prefer?

o)
Lottery A

m -

W $160,000 1 $60,000

Lottery B

W $110,000 = $70,000

Figure S3: Example of a general lottery question with all positive payofts.

Which lottery do you prefer?

o)
Lottery A

Hm -

| -$80,000 -$20,000

Lottery B

W -550,000 =-510,000

Figure S4: Example of a general lottery question with all negative payoffs.

38



Which lottery do you prefer?

0
Lottery A
m $80,000 = -S100,000
0

Lottery B

W 565,000 ©-510,000

Figure S5: Example of a general lottery question with all mixed payoffs.
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Table S2: Agricultural Lottery Set

Invest Do not invest
Payoff  Probability  Payoff  Probability Payoff Probability Payoff Probability
$4/bu

Drainage $21,600  100% $20,000 30% $24,000 70%
Drainage  $ 21,200 10%  $22400  90% $20,000 10% $24,000 90%
Drainage $21,600  100% $20,000 15% $24,000 85%
Drainage $21,200  25%  $22,400  75% $20,000 25% $24,000 75%
Irrigation  $ 16,500 10%  $17,200  90% $16,300 10% $24,000 90%
Irrigation  $ 16,350 15%  $17,850  85% $16,300 15% $24,000 85%
Irrigation  $16,500  25%  $17,200  75% $16,300 25% $24,000 75%
Irrigation  $16,350  30%  $17,850  70% $16,300 30% $24,000 70%
DT seeds $ 17,840 15%  $23840  85% $16,300 15% $24,000 85%
DT seeds $17,840  25%  $23,840  75% $16,300 25% $24,000 75%

Crop
Insurance  $17,800  35%  $22.600  65% $16,800 35% $24,000 65%

Crop 17000  15%  $23000  85% $16,800 15% $24,000 85%
Insurance

Crop «17000  30%  $23000  70% $16,800 30% $24,000 70%
Insurance

Crop 3 20%  $22,600  80% $16,800 20% $24,000 80%
Insurance 17,800 ’ ' '

$8/bu

Irrigation  $43,450 10%  $44,800  90% $32,600 10% $48,000 90%
Irrigation  $42,500 15%  $45450  85% $32,600 15% $48,000 85%
Irrigation  $42,500 30%  $45450  70% $32,600 30% $48,000 70%
Irrigation  $43,450 250  $44.800  75% $32,600 25% $48,000 75%
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Agricultural Lottery Introduction

In this section, we present two lottery choices related to crop management in the
face of drought or flooding risk.

The payoffs are framed as your gross crop revenue for a 40-acre field, before
input costs are deducted. We assume that without investment costs or bad
weather conditions your gross crop revenue would be $24,000 for the 40-acre
field.

You will be presented with a probability of bad weather occurring. Then you will be
asked whether or not you would like to invest in a production practice that will
reduce your risk of receiving lower gross crop revenue for the field.

If you choose to invest in a way to reduce yield risk, the payoff represents your
field's gross crop revenue minus the annual cost of the investment. If you choose
not to invest, you have some probability of earning lower gross crop revenue for
the field if bad weather occurs and some probability of earning the full gross crop
revenue for the field if bad weather does not occur.

Even if the situation looks different from what you might see on your own farm,
please answer as if you had to face the situation we describe.

An example of a question context is “Looking into the future, suppose there is a
30% chance that your field floods during the crop season and a 70% chance your
field does not flood.”

If your farm has sandy soils that don't flood, this may not seem realistic to you. But
we'd like you to imagine that this is the reality that you have to deal with. Some
guestions are about drought, and there too, we'd like you to imagine that the costs
and risks are exactly as presented in the question.

Please carefully consider the setting and choose whether you would invest or not
based on the situation.

Figure S6: Survey instructions for agricultural lottery section with explanation of lottery
framing.
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Agricultural Lottery Example Questions

Suppose there is a 10% chance that your field floods during the crop season
and a 90% chance your field does not flood.

You can invest in tile drainage at 60ft spacing. This costs $726 per acre which
is an annual cost of $1,600 for the 40-acre field. These annualized costs are
based on the full lifetime of the investment.

Would you

O
Invest in drainage at 60ft spacing.

-

m $21,200 $22,400

Do not invest in drainage.

. 90%

m 520,000 © $24,000

Figure S7: Example of drainage investment question in agricultural lottery experiment.
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Suppose there is a 10% chance that your field experiences a drought during
the crop season and a 90% chance your field does not.

You can invest in center pivot irrigation with 9 inches of water applied per
acre. This costs $285 per acre which is an annual cost of $10,400 for the 40-acre
field. This includes $8,750 in annualized fixed cost for equipment plus $1,650 in
operating costs. These annualized costs are based on the full lifetime of the

investment.
Would you

O

Invest in irrigation with 9 inches of
water applied per acre.
90%
m $16,500 $17,200
O

Do not invest in irrigation.

. 90%

m $16,300 © $24,000

Figure S8: Example of irrigation investment question in agricultural lottery experiment.

Please note that we increased the base revenue in the case of investing in irrigation to account for
the yield boost associated with the investment.

In the event of a severe drought (10% chance), you will earn $16,500 in gross crop revenue.
$24,000*1.12 = $26,900 in gross crop revenue minus the annual investment of $10,400.

In the event of no severe drought (90% chance), you will earn $17,200 in gross crop revenue.
$24,000%1.15 = $27,600 in gross crop revenue minus the annual investment of $10,400.
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Suppose there is a 35% chance that your field experiences some form of
severe weather next season that would cause crop damage, and a 65%
chance your field does not.

You can invest in crop insurance at 80% revenue protection. This costs $35
per acre which is an annual cost of $1,400 for the 40-acre field.

Would you
@)
Invest in crop insurance at 80%
revenue protection.
65%
m S17,800 $22,600
O

Do not invest in crop insurance.
65%

m $16,800 ' $24,000

Figure S9: Example of crop insurance investment question in agricultural lottery experiment.
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Suppose there is a 15% chance that your field experiences a drought next
season and an 85% chance your field does not.

You can invest in drought tolerant corn seeds. This has a price premium of $4
per acre for an added annual cost of $160 for the 40-acre field.

Would you

O
Invest drought tolerant corn seeds.

H -

m 517,840 $23,840

Do not invest in drought tolerant corn
seeds.

-

m 516,300 © $24,000

Figure S10: Example of drought tolerant seed investment question in agricultural lottery
experiment.
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Now suppose that corn prices are higher.

Instead of $24,000 in gross crop revenue from the 40-acre field, assume that your
gross crop revenue was $48,000 if the weather was good and there were no
investments to reduce risk.

Apart from the fact that the crop is worth twice as much, these decisions are just
like the ones you just saw.

Figure S11: Higher corn price irrigation investment instructions.

Suppose there is a 10% chance that your field experiences a drought during
the crop season and a 90% chance your field does not.

You can invest in center pivot irrigation with 9 inches of water applied per
acre. This costs $285 per acre which is an annual cost of $10,400 for the 40-acre
field. This includes $8,750 in annualized fixed cost for equipment plus $1,650 in
operating costs. These annualized costs are based on the full lifetime of the

investment.
Would you
O
Invest in irrigation with 9 inches of
water applied per acre.
90%
W 543,450 $44,800
O

Do not invest in irrigation.

. 90%

m $32,600  $48,000

Figure S12: Example of a higher corn price irrigation investment question in agricultural lottery
experiment.
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S2: Conceptual Framework for Nested Expo-Power

The expo-power function (Eq. S1) allows for nested tests, considering that it represents
constant absolute risk aversion (CARA) as r — 0 and constant relative risk aversion (CRRA) as

a — 0.

1—exp (—aw'™) (S1)
a

Ulw) =
These reductions can be shown by the Arrow-Pratt Indexes. The Arrow-Pratt Index of Absolute
Risk Aversion is represented by

-U"(w) 1+ a(l-rw'” (S52)
Uw) w '

Alw) =

When r = 0, Eq. (S2) reduces to the CARA coefficient, a, with 4 ’(w) = 0.

The Arrow-Pratt Index of Relative Risk Aversion is represented by

-U"(w)w
U'(w)

(S3)

R(w) = =7r+ a(l-7r)wl T,

When a = 0, Eq. (S3) reduces to the CRRA coefficient, r, and R’(w) = 0.
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S3: Summary Statistics

We pull state-level statistics from the 2022 Michigan Census of Agriculture and focus on the
North American Industry Classification Code referring to oilseed and grain farming (USDA-
NASS, 2024). We compare the characteristics of our sample population and that of the 2022

Michigan Census of Agriculture in Table S3.

Table S3 Producer and Farm Characteristics: Sample (n=44 in 2023) vs. Michigan
Agricultural Census (2022)

Sample MI Ag Census
Male 98% 77%
Age
Under 25 0% 1%
25t0 34 5% 8%
35t0 44 25% 13%
45to 54 14% 14%
55 to 64 25% 25%
65to 74 20% 23%
75 and older 11% 15%
Ethnicity
Caucasian 98% 99%
Hispanic or Latino 2% 1%
Education
High school diploma 25%
Some college 20%
Associate degree 16%
Bachelor’s degree 27% ---
Master’s degree or higher 11% ---
Acres harvested
1t0 199 0% 57%
200 to 499 7% 20%
500 to 999 7% 13%
1,000 to 1,999 52% 7%
2,000 or more 34% 4%
Average acres operated 2420 533
Total acres operated 106,499 5,333,742
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S4: Model Comparison and Selection

By modeling the Arrow-Pratt indexes of Absolute and Relative Risk Aversion (S2-S3), we can
see how estimates of risk preferences in the full sample change as a function of the estimated «
and r values and lottery payoff levels. Figure S13 displays how the changing absolute risk aversion
estimates from the expo-power function compared to their CARA and CRRA counterparts in both
the general and agricultural lottery domains. The top two panes of the figure show point estimates
and 95% confidence intervals (Cls) for the absolute risk aversion index, while the bottom two
panes show the same for the relative risk aversion index. The horizontal lines depict the CARA

and CRRA estimates from Table 2 of the main text for comparison with the expo-power estimates.

Risk Aversion Indexes under Expo-power Function

A. B.
y General Lottery Setting - Agricultural Lottery Setting
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Figure S13: Risk aversion index estimates under the expo-power function and their 95%
confidence intervals for a) absolute risk aversion under the general lottery setting, b) absolute risk
aversion in the agricultural lottery setting, c) relative risk aversion in the general lottery setting,
and d) relative risk aversion in the agricultural lottery setting. The solid horizontal lines represent
the corresponding risk aversion estimates for the CRRA and CARA functions for comparison.
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Side by side comparison of panels A vs B and C vs D reveals higher risk aversion in the
agricultural than the general domain. The larger confidence intervals on the right side (panels B
and D) sides shows that risk aversion levels in the agricultural domain are more heterogeneous
than in the general domain (panels A and C). Overall, the negative exponential utility functions
reveal that in the agricultural lottery setting, the relative risk aversion measure is consistently both
greater and more heterogeneous than in the general lottery setting. In the context of weather-driven,
agricultural yield risk, respondents are more risk averse than in a general (context-free) lottery by
both measures.

After estimating each model for the whole sample, we performed individual-level analyses to
measure the heterogeneity of risk preferences across the participants. We estimated risk
preferences for each participant under the CARA exponential (Eq. 4), CRRA power (Eq. 5), and
nested expo-power (Eq. 6) functions. Table S4 summarizes the individual-level analyses for each
utility model under the two lottery settings. We report the total number of significant individual-
level estimates for the CARA exponential (Eq. 4) and CRRA power (Eq. 5) functions in the
corresponding columns. We then estimated the nested expo-power (Eq. 6) at the individual-level
and performed Wald tests to evaluate whether risk attitudes could be represented by either of the
two more parsimonious utility models. As noted above, rejection of the null hypothesis (Eq. 6)
provides evidence of the null hypothesis of CARA (if 7;, = 0) or CRRA (if &,= 0). Table S5 reports
the full set of Wald Test results at the individual level.

While the whole sample estimates provide evidence of non-constant risk preferences, the
results at the individual level in Table S4 provide strong empirical evidence of CRRA preferences
in both lottery settings. For the general lottery data, Wald tests of individual models found CRRA

to fit in all 39 cases that converged and to be preferred to the negative exponential in 38 of the 41
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cases that converged. By contrast the CARA model fit only 2 of 44 cases that converged and was
never preferred to the nested expo-power. For the agricultural lottery data, the CRRA model fits in
35 of'the 42 cases that converged and in 17 of the 32 nested expo-power cases that converged. The
CARA model fits in just 7 of 42 cases that converged and in 1 of the 32 instances where the expo-
power function converged. No individual model with general lottery data and just four with
agricultural lottery data failed to reject the null hypothesis that the nested expo-power model was

superior to both CARA and CRRA.

Table S4: Individual Farmer Probit Models of Lottery Choices: Wald Test Results for the
CARA, CRRA, and Nested Expo-Power Functions

General Lotteries Agricultural Lotteries

CARA CRRA Nested CARA CRRA Nested
(Eq.4) (Eq.5) (Eq.6) (Eg.4) (Eq.5) (Eq.6)

Wald Test results by model
type when max likelihood
estimation converged

Converged 44 39 41 42 42 32
No significant results 42 0 3 35 7 10
Evidence of CARA 2 0 7 1
Evidence of CRRA 39 38 35 17
Evidence of ARA & RRA 0 4

Did not converge 0 5 3 2 2 12

While Table S4 summarizes the Wald test results, Table S5 provides the full Wald test results for

the 44 individuals in our sample.
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Table S5: Wald Test Results for Utility Model Selection at the Individual-Level

Nested RRA and ARA

id General ’ Agricultural General r Agricultural
1 0.37 --- 109.18*** -

2 0.51 0.25 143.45%** 3.98***
3 0.12 1.83 60.14*** 10.84***
4 0.07 3.15* 16.58*** 5.76**
5 0.11 0.15 55.14*** 0.86

6 0.00 0.00

7 0.10 0.92 26.68*** 341

8 0.73 0.35 50.40%*** 2.84*
9 2.63 0.02 42.00%** 3.01*
10 1.03 5.45** 296.71*** 6.24**
11 0.16 1.69 45,91%** 16.25***
12 0.10 0.27 32.49*** 1.88
13 0.10 2,389.54*:

14 2.35 0.87 24.71*** 2.68*
15 0.93 0.02 17.57%** 4.93**
16 0.06 0.00 16.86*** 5.21**
17 0.00 0.66

18 0.00 0.28 0.00 2.41
19 1.07 0.10 17.01*** 25.25***
20 0.11 1.63 26.98*** 4.85**
21 0.15 --- 75.56*** ---

22 0.88 --- 362.79*** ---

23 0.28 2.70* 87.38*** 9.39***
24 0.02 0.11 7.92%** 1.32
25 0.07 --- 19.79*** ---
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Table S5 (cont’d)

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

0.14
0.00
0.10
0.28
0.12
0.18

1.38
1.51

0.15
0.41
0.24
0.16
1.20
0.03
0.11
0.07

136.71*
0.14
0.00
0.00
0.01
0.49
0.00
6.79***

40.09***
48.45%**
54.89*%**
93.81*%**
63.80***
78.54***
23.75%**
20.46%**

65.62***

123.80***

97.80***
74.21%**
19.70***
10.10***
47.44%**
14.74%**

4.37**
136.71***
3.14*
15.80***

4.67**

2.19
27.84%**
0.64
0.74
0.06
3.62*
1.18

7.70***

Note: Standard errors in parentheses, *** p < 0.01, ** p

<0.05,* p < 0.10

In selecting the most suitable functional form for estimation of risk preferences, we followed the
criteria of Lau (1986) and Frank et al. (1990), which include computational facility, flexibility,
domain of applicability, parsimony of parameters, and readily interpreted parameters. Table S6
compares the models across these conceptual criteria along with results on goodness of fit at both
aggregate and individual farmer levels. Based on these criteria, the CRRA model ranks first,

followed by the expo-power model; the CARA model places last.
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Table S6: Choice of Model Criteria: CRRA Preferred in Individual Models and Overall

Criterion CARA CRRA Expo-Power
Computational facility High High Medium
. . DARA, DRRA,
Domain of applicability Coar::?:itO:Sk CO;VS;?;;:SK IARA, IRRA,
CARA, CRRA
Flexibility Limited Limited High
Parsimony of parameters High High Medium
Ease of interpretation High High Medium
General: Goodness-of-fit, ek ek , :
Aggregate (Wald) Reject Reject Fail to reject
General: Goodness-of-fit, N N
Individual (Wald) 38 of 41 reject 0 of 41 reject N/A
Agricultural: Goodness- ek ek , :
offit, Aggregate (Wald) Reject Reject Fail to reject
Agricultural: Goodness- 21 of 32 reject* 5 of 32 reject* N/A

of-fit, Individual (Wald)

Note: We omit theoretical consistency and factual conformity, given that all models

perform equally well.
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S5: Robustness Checks

To test the potential for path dependency and learning effects, we compare risk preference
parameter estimations of the CRRA function from the first half of the general lottery questions to
the second half. For each individual, we identify the order in which they saw the general lottery
questions and estimate individual risk preference parameters for the first 13 and the last 12 general
lottery questions separately. The results are provided in Table S7. Of the 27 individual parameter
estimations that converged for both sets of lottery questions, only one has evidence of a significant

difference between the first and second half of lottery questions (ID 25).

Table S7: Testing Ordering Effect of General Lottery Questions to Identify Potential Path

Dependency

r
ID Overall First 13 Last 12
1 0.836™* No convergence 0.927*
(0.773, 0.900) (0.741, 1.113)
5 0.765*** 0.751*** 0.775***
(0.708, 0.821) (0.668, 0.834) (0.691, 0.859)
3 0.880*** 3.200 0.743***
(0.822,0.937)  (-1,541, 1,547) (0.671, 0.815)
4 0.738™* No convergence 0.767%**
(0.691, 0.784) (0.690, 0.844)
5 0.878*** 0.882*** 0.859***
(0.818, 0.937) (0.818, 0.945) (0.733, 0.985)
6 0.999*** 0.999*** 1.067**
(0.994, 1.006) (0.999, 1.000) (0.165, 1.968)
7 0.771*** 0.796*** 0.713***
(0.712, 0.831) (0.713, 0.879) (0.655, 0.771)
g 1.168 1.168 0.999***
(-0.829, 3.164)  (-0.829, 3.164) (0.999, 1.000)
9 0.926*** 0.994*** 0.909***
(0.773, 1.079) (0.692, 1.196) (0.720, 1.097)
10 0.753*** 0.802*** 0.681***
(0.702, 0.804) (0.714, 0.890) (0.641, 0.721)
1 0.782*** 0.782*** 0.781***

(0.695, 0.870)

(0.695, 0.870)
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Table S7 (cont’d)

12

13

14

15

16

17

18

19

20

21

22

23

24

25*

26

27

28

29

30

31

0.820%**
(0.750, 0.890)
0.821%**
(0.746, 0.897)
0.855%**
(0.764, 0.946)
0.932%**
(0.765, 1.098)
0.765%**
(0.709, 0.822)
No
convergence
0.955%**
(0.748, 1.162)
0.914%**
(0.772, 1.056)
0.7222%**
(0.674, 0.770)
0.886%**
(0.832, 0.940)
0.857%**
(0.764, 0.949)
0.840%**
(0.777, 0.904)
0.827%**
(0.755, 0.898)
0.762%**
(0.709, 0.815)
0.804%**
(0.734, 0.875)
0.766%**
(0.710, 0.823)

0.882%**
(0.825, 0.938)

0.855%**
(0.790, 0.919)
0.882%**
(0.824, 0.938)

0.877%**
(0.818, 0.936)

0.824%**
(0.742, 0.942)
0.838%**
(0.709, 0.967)
0.877%**
(0.709, 1.046)
0.931%%*
(0.615, 1.246)
0.754%%*
(0.680, 0.827)
0.780%**
(0.683, 0.876)
0.957%**
(0.623, 1.291)
0.873%**
(0.755, 0.992)
0.736%**
(0.671, 0.801)
0.843%**
(0.709, 0.976)
0.897%**
(0.754, 1.040)
0.864%**
(0.794, 0.933)
0.827%**
(0.733, 0.921)
0.675%**
(0.636, 0.713)
0.778%**
(0.698, 0.858)
0.771%%*
(0.693, 0.850)
1.738
(-40.321,
43.797)
0.767%**
(0.687, 0.847)
0.786%**
(0.693, 0.879)
9.021
(-48,085,
48,103)
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0.759%**
(0.668, 0.850)
0.810%**
(0.721, 0.900)
0.837%**
(0.720, 0.954)
4.720
(-12,752, 12,761)
0.780%**
(0.683, 0.876)

No convergence

0.954%**
(0.690, 1.218)
1582
(-22.939, 26.102)
0.687%**
(0.604, 0.770)
0.889%**
(0.835, 0.943)
0.794%**
(0.707, 0.881)
0.772%%*
0.700, 0.844)
0.826%**
(0.717, 0.935)
0.813%**
(0.726, 0.901)
0.832%**
(0.721, 0.944)
0.760%**
(0.676, 0.844)

0.795%**
(0.682, 0.909)

0.873%**
(0.808, 0.937)
0.786%**
(0.693, 0.879)

0.765%**
(0.674, 0.856)



Table S7 (cont’d)

32

33

34

35

36

37

38

39

40

41

42

43

44

0.893***
(0.845, 0.942)
0.977%**
(0.725, 1.228)
0.907%**
(0.775, 1.038)
0.892%**
(0.842, 0.943)
0,874+
(0.815, 0.934)
0.843%**
(0.778, 0.908)
0.999***
(0.999, 1.000)

0.878%**
(0.821, 0.935)

0.881%**
(0.825, 0.938)
0.999%**
(0.975, 1.025)
0.816%**
(0.744, 0.888)
0.868%**
(0.807, 0.930)
0.685%**
(0.648, 0.722)

0.870%**
(0.801, 0.939)
0.938%**
(0.744, 1.132)
0.926%**
(0.729, 1.124)
0.999%**
(0.827, 1.171)
0.749%**
(0.665, 0.833)
0.771%%*
(0.689, 0.854)
0.999%**
(0.999, 1.000)
1.632
(-38.502,
41.765)
0.782%**
(0.689, 0.875)
1.029%**
(0.417, 1.641)
0.789%**
(0.686, 0.893)
0.848%**
(0.761, 0.936)
0.729%**
(0.658, 0.800)

6.396
(-337,457, 337,470)
0.999%**
(0.999, 1.000)
0.878%**
(0.712, 1.044)
0.881%**
(0.819, 0.944)
1.106
(-0.273, 2.484)
0.860%**
(0.791, 0.929)
0.840%**
(0.713, 0.966)

0.858%**
(0.785, 0.931)

1.956
(-110.674, 114.545)
0.999%**
(0.999, 1.000)
0.831%**
(0.738, 0.924)
0.910%**
(0.735, 1.085)

No convergence

Tables S8 and S9 provide alternative results with different combinations of explanatory variables

for comparison to Table 3 of the main text.

57



Table S8: Alternative Specifications of Probit Model (Eq. 5) of Lottery Choices Given Power Function for General Lotteries

Preferred

Specification Q) 2 3 4
Constant 0.556*** 0.552*** 0.557*** 0.607*** 0.611***
(0.089) (0.092) (0.092) (0.060) (0.063)
age 0.009*** 0.009*** 0.009*** 0.009*** 0.008***
(0.002) (0.002) (0.002) (0.002) (0.002)
age2 -6.39e-5*** -6.52e-5*** -6.52e-5*** -5.82e-5*** -5.62e-5***
(1.89¢-5) (2.00e-5) (1.97e-5) (1.65¢-5) (1.65¢-5)
education level -0.003 -0.003 -0.005 -0.008 -0.007
(0.005) (0.005) (0.005) (0.005) (0.005)
acres operating 30086 -1.636-6 -1.80e-6
(1.35¢-6) (8.78¢-6) (2.18¢-6)
acres operating? "1.47e-10
(4.80e-10)
o level 0.007 0.008 0.004
(0.005) (0.006) (0.006)
debt-to-asset ratio (8 8822) (8 (?(?;)
Log-
A -830.51 -829.26 -831.57 -849.14 -849.29
pseudolikelihood
Wald test of 1.68 1.78 1.83 3.24

omitted variables

Note: Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p <0.10



Table S9: Alternative Specifications of Probit Model (Eq. 5) of Lottery Choices Given Power Function for Agricultural

Lotteries
Preferred
Specification Q) 2 3 4
Constant 0.759* 0.518 0.704** 0.986*** 1.189***
(0.446) (0.484) (0.324) (0.178) (0.262)
age -0.006 0.002 -0.002 -0.008 -0.016
(0.016) (0.012) (0.009) (0.007) (0.011)
age2 6.45e-5 -1.73e-5 2.35e-5 8.68e-5 1.63e-4
1.61e-5) (1.09¢-5) (8.566-5) (7.39¢-5) (1.18e-4)
education level 0.032 0.037 0.030 0.015 0.016
(0.019) (0.026) (0.020) (0.016) (0.013)
acres operating L7085 3.456-5 1.256-5%**
(6.02¢-6) (5.82¢-5) (4.54¢-6)
acres operating? -2.92e-9
(3.28¢-9)
o level 0.039 0.025 0.024
(0.029) (0.023) (0.025)
debt-to-asset ratio (8 (())(())81) (8 (?(?:)
- Log- 702.12 -699.15 -705.96 -726.52 72420
pseudolikelihood
Wald test of 0.99 0.44 1.34 2.39

omitted variables

Note: Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p <0.10



References

Frank, M. D., Beattie, B. R., & Embleton, M. E. (1990). A Comparison of Alternative Crop
Response Models. American Journal of Agricultural Economics, 72(3), 597-603.

Lau, L. J. (1986). Functional Forms in Econometric Model Building. Handbook of Econometrics,
3, 1515-1566.

USDA-NASS. (2024). Michigan, Table 75. Summary by North American Industry Classification
System: 2022 (2022 Census of Agriculture State Level Data, Issue.
https://www.nass.usda.gov/Publications/AgCensus/2022/Full_Report/VVolume_1, Chapte
r 1 State Level/Michigan/st26 1 075 _075.pdf

60


https://www.nass.usda.gov/Publications/AgCensus/2022/Full_Report/Volume_1,_Chapter_1_State_Level/Michigan/st26_1_075_075.pdf
https://www.nass.usda.gov/Publications/AgCensus/2022/Full_Report/Volume_1,_Chapter_1_State_Level/Michigan/st26_1_075_075.pdf

