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FARMER RISK AVERSION TO CHANGING WEATHER 

 

Abstract: As farmers adapt to changing climate, they modify practices and technologies to 

manage evolving production risk. Understanding farmers’ risk attitudes is critical to predicting 

their decisions about climate change adaptation. This research empirically estimates utility 

functions to measure the risk preferences of Michigan corn-soybean farmers. We elicit from 

farmers their choices between paired lotteries in both a general and an agricultural domain. 

Aggregate results show that farmers are risk averse and tend to be more risk averse toward 

agricultural investment decisions than general risky gambles. Estimating individual farmer 

constant relative risk aversion (CRRA) utility functions reveals greater heterogeneity of risk 

preferences in the agricultural domain than in the general one. Determinants of CRRA preferences 

point to decreasing relative risk aversion based on crop acreage as a measure of wealth. 

Introduction 

Understanding farmer risk preferences is becoming more important than ever as farmers confront 

climate change. Many geographic regions, including the Midwestern United States, are 

experiencing extreme weather with greater frequency as sporadic drought and excessive rainfall 

become more common (Chen & Ford, 2023; Ford et al., 2021). Changing weather alters the 

location and shape of crop yield probability distributions (Lobell et al., 2011; Miller et al., 2021; 

Ortiz-Bobea, 2021; Schlenker & Roberts, 2009; Tack et al., 2012). Farmers have always managed 

production risk. But as climate changes, production risk is changing, and farmers must adapt. How 

they manage risk under these shifting conditions largely depends on their risk preferences. If the 

context of changing climate affects those risk preferences, then that context matters for climate 

change adaptation policy. 

Apart from the early work of Von Neumann and Morgenstern (1947) on risk in game theory, 

much of the early thinking about decision making under risk was done by psychologists (Edwards, 

1953, 1961; Tversky, 1967). Economists John Pratt (1964) and Kenneth Arrow (1965) provided 

the conceptual foundation for expected utility theory (EUT) and its mathematical expression. The 
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functions that model risk preferences have evolved with the associated EUT. Early empirical 

studies estimated mean-variance utility functions (Dillon & Scandizzo, 1978; Officer & Halter, 

1968) where concavity implied risk aversion, consistent with the theoretical work of Von Neumann 

and Morgenstern (1947).  

Following the development of expected utility functions that exhibit constant absolute (CARA) 

and relative (CRRA) risk aversion based on wealth (Arrow, 1971; Pratt, 1964), these functions and 

variants were used to estimate risk aversion levels based on elicited risk preferences and risky 

choices (Binswanger, 1980; Dillon & Scandizzo, 1978). The expo-power function, introduced by 

Saha (1993) nests both the CARA and CRRA forms, enabling the direct modeling of risk aversion 

that decreases or increases with wealth or changes in income. Holt and Laury (2002) adapted the 

expo-power function for maximum likelihood estimation (MLE) using information elicited about 

acceptable price levels. Innovations in choice experiments to elicit risk preferences from lottery 

choices enable MLE of expected utility functions for individuals (Harrison & Rutström, 2008).  

Economic choice experiments have shown that behavior is affected by both who makes the 

choice (the experimental population) and what they are choosing (the domain). It is now well 

established that for most populations of decision makers, “who” makes a difference: Field 

experiments with the relevant population are more informative than lab experiments with 

university students (Levitt & List, 2007). Growing evidence indicates that context matters too, 

because risky choices in the abstract are often different than similar choices in a familiar domain 

(Cerroni, 2020; Nguyen et al., 2022). For farmers exposed to changing climate risk, the farming 

context may influence their risk preferences and risk management choices. 

Agricultural economists have a long history of using choice experiments in the field to elicit 

farmer attitudes toward risk. The earliest field research used simulated games against nature to 
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elicit indifference curves for pairs of risky choices based on general gambles (Officer & Halter, 

1968). Within a decade, Dillon and Scandizzo (1978) elicited risk preferences in an agricultural 

domain using a paired sample of small-scale landowners and sharecroppers. Shortly thereafter, 

Binswanger pioneered experimental lottery choices connected to real payoffs (Binswanger, 1980). 

Over recent decades, significant advances have enabled the estimation of expected utility functions 

using random lottery pairs (Hey & Orme, 1994) and MLE from limited dependent variable data 

(Harrison & Rutström, 2008). 

Using these methodological tools, this research aims first to estimate expected utility functions 

and associated risk preferences for an aggregate sample of farmers presented with lottery choices 

in an abstract, general domain compared to choices in the context of agricultural investments 

driven by weather risk. We focus on agricultural investments related to water management because 

climate change in Michigan (where the research was conducted) is expected to make precipitation 

less frequent and more intense, increasing risk of seasonal drought and excess moisture. To our 

knowledge, this is the first paper to frame risk preference elicitation in the context of climate 

change conditions that impact crop yields.  

Second, we compare the dispersion of individual risk preferences between the general and 

agricultural domains. A recent meta-analysis enables us to compare risk preferences not just for 

sample means, but across individuals sampled (Garcia et al., 2024).  Third, we estimate the 

determinants of individual risk aversion levels for both domains. Prior studies have found risk 

aversion to be affected by age (Holt & Laury, 2002; Mata et al., 2011; Meissner et al., 2023; Tanaka 

et al., 2010), income (Holt & Laury, 2002; Meissner et al., 2023), wealth (Garcia et al., 2024), and 

education (Donkers et al., 2001; Gächter et al., 2022; Garcia et al., 2024; Harrison et al., 2007; 

Vieider et al., 2019; Von Gaudecker et al., 2011).  Of special interest is the effect of wealth on risk 
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aversion, as wealth effects could influence policy design. Fourth and last, we suggest how the traits 

of weather-driven agricultural risk aversion and its determinants can inform climate change 

adaptation policy. 

To preview the results, we find that farmers are risk averse. The farmers interviewed were more 

risk averse for weather-driven, agricultural investment decisions than for general, context-free 

lottery choices under the CARA and expo-power functions, although the difference was not 

statistically significant at the 0.10 level under the CRRA function. Farmers’ individual CRRA risk 

aversion coefficients were more heterogeneous for weather-driven agricultural investments than 

for general lottery choices. In both domains, the degree of risk aversion decreased with cropland 

acreage, a measure of wealth. In the general lottery domain, age was also a determinant, with risk 

aversion increasing quadratically up to age 70 and decreasing thereafter.  

These findings suggest that risk aversion affects agricultural investment decisions related to 

climate change adaptation. The wide dispersion of risk attitudes implies that adaptation 

communications and policies should be tailored to the degree of risk aversion. For the largest-scale 

farmers (managing more than a few thousand acres), messaging about climate change adaptation 

should focus on relatively risk-neutral profit maximization and returns on investment. By contrast, 

messaging to smaller-scale farmers should focus on limiting down-side revenue risk. 

We structure the remainder of this paper as follows. We first provide an overview of EUT and 

define relevant functional forms. Next, we describe our econometric estimation methods. Then, 

we explain our sampling approach, data collection process, structure of the interviews, and 

experimental design. Finally, we present our results and discuss the policy implications 

summarized above. 
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Conceptual and Empirical Framework 

Conceptual Framework 

The mathematician Bernoulli was the first to discuss risk preferences in 1738 (Bernoulli, 1738 

[1954]). Bernoulli stated that to understand the value an individual places on something, one needs 

to measure the value based on utility as opposed to price. Since then, the experimental psychology 

and economics literatures have explored the concept of risk preferences extensively (Mata et al., 

2018). In both cases, risk preferences refer to the tradeoffs that individuals are willing to make 

between rewards and losses. To model risk preferences, one can build upon of Bernoulli’s concept 

of utility with the expected utility theory (EUT). 

Von Neumann and Morgenstern (1947) illustrated how to obtain the EUT from three axioms 

about decision-maker preferences: 1) that preferences can be ordered, 2) that they are continuous, 

and 3) that the order is independent of irrelevant alternatives. Given these assumptions, the EUT 

posits that an expected utility function exists for each decision maker based on objective 

probabilities. The utility function can be nonlinear, where concavity connotes risk aversion and 

convexity connotes risk preferring. We denote utility for individual n as 𝑈𝑛(𝑤𝑖𝑗), where 𝑤𝑖𝑗 

represents the lottery payoff j for lottery alternative i. Eq. (1) defines the expected utility for lottery 

i given the exogenously defined payoff, 𝑤𝑖𝑗, and corresponding exogenous probability, 𝑝𝑖𝑗, for 

each j lottery outcome.  

 

𝐸𝑈𝑛𝑖 = ∑ 𝑝𝑖𝑗𝑈𝑛(𝑤𝑖𝑗)

𝑗

𝑙=1

 

 (1) 

Since Von Neumann and Morgenstern (1947) posited the EUT, advances have been associated 

with measuring the degree of risk aversion, the shape of utility functions, and the empirical 

methods for estimating the corresponding risk parameters of the assumed utility functions. In order 
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to quantify the degree of risk preferences, one can analyze the Arrow-Pratt Indexes of Absolute 

Risk Aversion and Relative Risk Aversion (Arrow, 1965; Pratt, 1964). 

Two functions that are compatible with EUT and that exhibit constant risk preferences are the 

constant absolute risk aversion (CARA) and constant relative risk aversion (CRRA) functions 

(Pratt, 1964). CARA implies preference equivalence sets for lottery pairs that differ by an additive 

shift, meaning that the preference between two lotteries is unaffected if the same amount increases 

the payoffs (Wilcox, 2008). In this case, preferences between $100 versus $120 are the same as 

$200 versus $220 since the same additive term has increased all outcomes. Meanwhile, CRRA 

preferences imply preference equivalence sets for lottery pairs that differ by a proportional shift 

(Wilcox, 2008). Hence, under the CRRA assumption, the preferences for $100 versus $200 are the 

same as $200 versus $400, given that the same multiplicative term increases both outcomes.  

We follow common practice in using the negative exponential function to model CARA 

preferences, with the risk preference parameter represented by α, as shown in Eq. (2). We utilize 

the power function to model CRRA preferences, with the risk aversion parameter represented by 

r in Eq. (3).  

 𝑈(𝑤) =  −𝑒−𝛼𝑤 (2) 

 
𝑈(𝑤) =

𝑤1−𝑟

1 − 𝑟
 

(3)  

For the negative exponential function defined by Eq. (2), the Arrow-Pratt Index of Absolute Risk 

Aversion reduces to the constant term of 𝛼. Similarly, for the power function defined by Eq. (3), 

the Arrow-Pratt Index of Relative Risk Aversion reduces to the constant term of r. Under both 

CARA and CRRA, a negative risk aversion parameter represents risk-loving behavior, a positive 

risk parameter represents risk-averse behavior, and preferences approach risk neutrality as the risk 

aversion parameters approach zero.  
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Previous work relied on nonlinear approximations of the utility function (Kaylen et al., 1987; 

Lambert & McCarl, 1985) or non-nested tests (Vuong, 1989) to choose the best model fit between 

CARA (Eq. 2) and CRRA (Eq. 3) preferences. Saha (1993) introduced the expo-power utility 

function, a flexible form that can model relative and absolute risk aversion. Holt and Laury (2002) 

modified Saha’s (1993) function to the version shown in Eq. (4) that demonstrates alternative risk 

preferences based on the parameter signs and values. The expo-power function in Eq. (4) allows 

for nested tests, considering that it represents CARA as 𝑟 → 0 and CRRA as 𝛼 → 0. These 

reductions can be shown by calculating the associated Arrow-Pratt Indexes, which are provided in 

the supplemental material.  

 
𝑈(𝑤) =  

1 − 𝑒𝑥𝑝 (−𝛼𝑤1−𝑟)

𝛼
 

(4) 

When the expo-power function cannot be simplified to one of the nested CARA or CRRA 

functions, it displays risk aversion that changes over the magnitude of the stakes of the risky 

gambles.  

Both the parameter 𝛼 from the exponential function (Eq. 2) that represents CARA and 𝑟 from 

the power function (Eq. 3) that represents CRRA can be found in the nested expo-power function 

(Eq. 4) that provides a flexible form containing both 𝛼 and 𝑟. However, we cannot 

straightforwardly compare these parameter estimates, because the 𝛼 of the nested expo-power 

function (Eq. 4) does not directly represent the Arrow-Pratt Index of Absolute Risk Aversion, nor 

does the 𝑟 from Eq. (4) represent the Arrow-Pratt Index of Relative Risk Aversion. The 𝛼 and 𝑟 

estimated for the expo-power function must be plugged into the corresponding equations to 

calculate the Arrow-Pratt Indexes of Absolute and Relative Risk Aversion. 



8 
 

Empirical Framework 

A fundamental challenge in measuring risk attitudes is that we cannot observe an individual’s 

utility function directly. However, we can make statistical inferences from the preferences revealed 

by how a decision maker makes choices. While there are various elicitation methods, we utilize 

the random lottery pair method as it is easy to explain to participants, applicable to production risk, 

and incentive-compatible (Charness et al., 2013; Harrison & Rutström, 2008). 

The random lottery pair method presents subjects with one pair of lotteries at a time, and the 

participants must make multiple choices in a random sequence (Hey & Orme, 1994). Risk 

preferences elicited using lotteries have been shown to predict market behavior more reliably than 

values elicited using self-reported psychometric scales (Pennings & Smidts, 2000). Unlike the 

multiple price list method popularized by (Holt & Laury, 2002), one cannot directly infer risk 

preferences from the responses for random lottery pairs. Researchers must use estimation methods, 

such MLE, to calculate risk preferences (Harrison & Rutström, 2008). The random lottery pair 

method allows us to estimate risk preferences in the context of production risk that is the focus of 

this research, while the multiple price list method focuses on prices (Anderson et al., 2007). 

The random lottery pair method enables the econometric estimation of functions 𝑈𝑛(𝑤𝑖𝑗), such 

as Eq. (2-4), for decision maker n from choices between pairs of risky gambles. In this research, 

we offer two sets of risky gambles, where 𝑤𝑖𝑗 represents the lottery payoff j for lottery alternative 

i. The first set of lottery pairs comprises context-free choices where the decision maker must 

choose between two lotteries, each of which has two payoffs with associated probabilities. The 

second set of lotteries involves choices in an agricultural domain where participants make 

decisions regarding investments to manage weather-driven, crop yield risk.  
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The random utility framework provides the theoretical underpinning for econometric 

estimation. It models an individual’s preferences between the available alternatives as the choice 

that results in the highest expected utility for the individual (McFadden, 1973). In this framework, 

the dependent variable is the binary choice, where yi = 1 indicates the lottery chosen. The 

probability that decision maker n chooses alternative i instead of alternative k depends on the 

exogenous payoffs, 𝑤𝑖𝑗 and 𝑤𝑘𝑗 , and probabilities, 𝑝𝑖𝑗  and 𝑝𝑘𝑗, associated with each lottery choice. 

 𝑃(𝑦𝑖 = 1| 𝑤𝑖𝑗, 𝑝𝑖𝑗, 𝑤𝑘𝑗 , 𝑝𝑘𝑗) = 𝑃𝑟𝑜𝑏[𝐸𝑈𝑛𝑖 >  𝐸𝑈𝑛𝑘] ∀ i ≠ k (5) 

Because utility is not directly observable, one can only predict the probability that a decision 

maker selects a given lottery. We apply MLE to a binary response model using a choice probability 

equation. We then estimate the parameters of the utility function that maximize the probability that 

the observed choice of the individual maximizes their expected utility compared to the option they 

did not choose. In particular, we maximize a function of the difference between expected utilities 

for each binary lottery choice. We can rewrite Eq. (5) as 

 𝑃(𝑦 = 1| 𝑤𝑖𝑗, 𝑝𝑖𝑗 , 𝑤𝑘𝑗, 𝑝𝑘𝑗) = 𝑃𝑟𝑜𝑏[𝐸𝑈𝑛𝑖 −  𝐸𝑈𝑛𝑘 > 0] ∀ i ≠ k (6) 

The utility functions of Eq. (2-4) each enter the EUT function of Eq. (1) separately to create 

the latent index. The latent index is then linked to the observed choices using a standard cumulative 

normal distribution function Φ(𝐸𝑈𝑛𝑖 −  𝐸𝑈𝑛𝑘). We construct a log-likelihood equation (Eq. 7) to 

obtain parameter estimates given the bivariate probit index function. The log-likelihood equation 

depends upon the utility theory being evaluated, the functional form of the utility function, and an 

indicator variable that specifies the lottery choice from the set. Therefore, for each decision maker, 

n, we can estimate risk preferences from lottery choices as follows: 

 𝐿𝐿(𝑈𝑛(𝑤); 𝑤𝑖𝑗, 𝑝𝑖𝑗, 𝑤𝑘𝑗, 𝑝𝑘𝑗) = 

∑ [ln(Φ(𝐸𝑈𝑛𝑖 −  𝐸𝑈𝑛𝑘)) ∗ 𝑰(𝑦 = 1) +𝑖  ln(Φ(−(𝐸𝑈𝑛𝑖 − 𝐸𝑈𝑛𝑘))) ∗ 𝑰(𝑦 = 0)] ∀ i≠ k 

(7) 
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where I(.) is the indicator function and y indicates the lottery choice. Through MLE, we can 

estimate 𝛼̂ from Eq. (2), 𝑟̂ from Eq. (3), or 𝛼 ̂and 𝑟̂ from Eq. (4), depending on which utility 

function is used for the latent index.  

Once we have parameterized Eq. (2-4), we can evaluate which utility model best suits each 

lottery domain. For the aggregate sample we compare results from all three expected utility 

models. For evaluation of the distribution of individual farmer risk aversion levels, however, we 

first select a preferred model using both theoretical and empirical criteria. From a conceptual 

perspective, Lau (1986) identifies five key criteria: theoretical consistency, factual conformity, 

computational facility, flexibility, and domain of applicability. To these we add parsimony of 

parameters and readily interpreted parameters (Frank et al., 1990).  

The exponential function (Eq. 2) that represents CARA, the power function (Eq. 3) that 

represents CRRA, and the nested expo-power function (Eq. 4) that provides a flexible form were 

all constructed to provide theoretical consistency and factual conformity under EUT. For the 

computational facility criterion, the single-parameter exponential (Eq. 2) and power (Eq. 3) 

functions allow for more straightforward model estimation and parsimony of parameters. 

However, the complexity of the expo-power function (Eq. 4) allows for greater flexibility and more 

complex risk preferences than CARA or CRRA, giving it a broader domain of applicability. 

Finally, the CARA and CRRA models offer constant risk aversion parameters that are more readily 

interpreted. 

We apply nested choice-of-model tests as empirical measures of goodness-of-fit to expected 

utility functions estimated individually (for each farmer) as well as in aggregate (for the whole 

sample). Specifically, we evaluate whether the more complex expo-power model has added 

explanatory power that justifies its use over the simpler CARA or CRRA models by applying the 
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Wald test (Wald, 1943) of the null hypotheses 𝑟 = 0 (implying CARA preferences) and 𝛼 = 0 

(implying CRRA preferences).  

Our objectives in evaluating the attitudes of Midwestern U.S. farmers toward weather risk are 

to test two exploratory hypotheses. The first tests the importance of the domain or context. In null 

form, it states that risk preferences are the same regardless of context, no matter whether elicited 

with a general lottery or with weather-related agricultural lottery data.1 Using the frequency 

distribution of individual estimates, we select a preferred expected utility functional form and 

consider whether the context affects the mean level of risk aversion as well as the median and the 

spread. The literature abounds with evidence that contextual instructions can matter in 

experimental economics (Alekseev et al., 2017; Meraner et al., 2018; Rommel et al., 2019), so we 

wished to determine whether a weather-driven, agricultural yield risk context affects farmer risk 

preferences.  

Our lottery experiment can be defined as a framed field experiment. Framed field experiments 

present subjects with risky decisions in their areas of expertise in a natural but controlled setting 

(Harrison & List, 2004). By adding context familiar to the participants, framed field experiments 

often introduce the background, exogenous risks, and endogenous risks explicitly presented within 

the experiment (Eeckhoudt et al., 1996).  

Our second null hypothesis is that risk preferences are inherent and thus unrelated to potential 

determinants that are externally observable. To estimate the effects of decision-maker traits on 

 
1 The psychology and economics literature have developed cumulative prospect theory (CPT) as an alternative to 

EUT (Bocquého et al., 2014; Finger et al., 2024). CPT can accommodate more nonlinearities given the additional 

parameters. However, the estimation therefore requires many lottery choice observations. Given we were already 

comparing two lottery domains, we opted not to risk inducing cognitive fatigue by including additional lottery 

questions. Bocquého, G., Jacquet, F., & Reynaud, A. (2014). Expected Utility or Prospect Theory Maximisers? Assessing Farmers' Risk Behaviour from Field-Experiment Data. European Review of Agricultural Economics, 41(1), 135-172. , Finger, R., Garcia, V., McCallum, C., & Rommel, J. (2024). A Note on European Farmers' Preferences Under Cumulative 

Prospect Theory. Journal of Agricultural Economics, 75(1), 465-472.  
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decisions, we include a vector of traits, 𝑿′ = [𝑋1 ⋅⋅⋅ 𝑋𝑗], in the MLE equation that estimates the 

risk aversion coefficient(s). For the CRRA risk aversion coefficient, this would look like,  

 𝑟̂ =  𝛽̂0 + 𝛽̂𝑗𝑿  (8) 

We are particularly interested in whether risk aversion changes with wealth, as there is prior 

evidence for risk aversion decreasing with wealth, that wealthier individuals have a safety net 

(Garcia et al., 2024). Our study uses income intervals, acres operated, and debt-to-asset ratio 

intervals to proxy for wealth.  

Data  

This framed field experiment is based on interviews of Michigan crop farmers at county-level 

meeting places, including restaurants and county offices of Michigan State University Extension. 

We selected interviewees from the population of Michigan corn-soybean farmers who operated at 

least 300 acres in 2022 and devoted a portion of this land to growing corn for grain. We chose a 

minimum of 300 acres to ensure that the producers relied on farming as a major source of income 

(USDA-NASS, 2022). As such, our participants would take seriously risk management to 

safeguard their income. We also wanted participants to be the primary farm decision maker on 

crop production, as we asked questions about corn production and commodity prices. Michigan 

State University Extension educators helped with recruitment, resulting in 44 farmer interviews 

between September 2022 and April 2023.  

We conducted computer-assisted, in-person interviews, with the general lottery directions 

presented to the group before individual completion of the online survey with Qualtrics. Graduate 

students from the Department of Agricultural, Food, and Resource Economics at Michigan State 

University facilitated the personal interviews by answering questions and assisting with navigating 

the online survey. The first and second portions of the study comprised the lottery-based 
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experiments. The first section contained 25 binary lottery choices in a general domain, while the 

second section presented 18 lottery choices in the context of farm investment decisions related to 

weather-driven crop yield risk.  

We presented the 25 general lottery pairs in random order to prevent ordering effects; they 

included payoffs that were both positive, both negative, and a mix of the two. The general lottery 

experimental design is based on Pedroni et al. (2017) to ensure adequate variation across payoffs 

and probabilities. Each general lottery had two potential outcomes denoted by bar graphs to 

visually represent the corresponding probabilities for each outcome. For example, Figure 1 depicts 

that Lottery A offers 40% odds of winning $100,000 versus 60% odds of losing $80,000, while 

Lottery B offers 25% odds of winning $10,000 versus 75% odds of losing $40,000.  

 

 

Figure 1: Example of visual representation of lottery bar graphs. 

Before beginning the general lottery experiment, we provided each participant with a $50 

participation payment plus a $40 endowment from which they could gain or lose money, given 

that the lottery outcomes included negative payoffs. We informed participants that the computer 

would randomly select one of the questions to determine a payoff, with a conversion from 

hypothetical dollars to real money of $4,000 to $1. In extreme cases, the payoff could double or 
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erase the $40 endowment. The supplemental information includes the complete set of general 

lotteries, the experimental procedures, and example questions for each payoff type.  

The agricultural lottery experiment framed the 18 lottery choices as investment decisions to 

mitigate revenue loss due to excessive moisture or drought. We informed participants that payoffs 

were based on revenue of $24,000 for the hypothetical 40-acre field. The payoffs in the agricultural 

lottery domain were grounded in potential corn yield outcomes under Michigan production 

conditions, so the design lacks the full orthogonality of the general lottery payoffs. The lotteries 

offered choices between taking no action or investing in drainage, irrigation, drought-tolerant 

seeds, or crop insurance. For example, a participant had a 30% chance of their hypothetical field 

flooding in the upcoming season and a 70% chance that the field does not flood. They could invest 

in tile drainage at 60ft spacing with an annualized cost of $1,600 for the 40-acre field. If the 

participant chose not to invest in tile drainage, they had a 70% chance of the flood not occurring, 

corresponding to receiving the total gross income of $24,000 for the 40-acre field. They also had 

a 30% chance of the flood occurring, in which case they would hypothetically receive $20,000 due 

to crop yield loss. The payoffs related to investing in tile drainage at 60-foot spacing reflected a 

70% chance of receiving $22,400 (the gross crop revenue minus the annualized investment cost if 

the flooding event does not occur) versus a 30% chance of receiving $21,200 (the gross crop 

revenue less the annualized investment cost and a smaller percentage of crop yield if flooding does 

occur). Given the high cost associated with irrigation, we also included four irrigation lottery 

questions with a higher baseline crop revenue of $48,000 to reflect higher potential mean yields.  

Each investment category had a 2x2 experimental design with combinations of high and low 

probability of adverse weather outcomes and high and low investment costs to provide variation 

in the lottery questions. The one exception to the 2x2 design was drought-tolerant seeds. There 



15 
 

was only one level of investment intensity (to buy the seed), but there was still a high and a low 

probability question while holding intensity constant. These combinations resulted in a set of 14 

agricultural lotteries with four questions relating to tile drainage, four relating to crop insurance, 

two about drought-tolerant seeds, and four for irrigation investments. With the four additional 

irrigation investments at a higher revenue level, we have a total of 18 agricultural lotteries.2 We 

consulted with Michigan State Extension agents to ensure realistic investment costs and intensities. 

The proportion of crop yield loss in the event of adverse weather without investment was taken 

from Li et al. (2019).  

To help with participant understanding, we grouped the questions for each investment type 

into a block of questions. For example, we grouped all drainage questions within a block. We then 

randomized the order of the questions within the block, so participants saw the drainage questions 

together in a random sequence. We also randomized the order of the blocks so that one individual 

might see the block of drainage questions first, while another may see the block of drainage 

questions as their third investment type. We include the complete set of agricultural lotteries in the 

supplemental information, along with example questions for each investment type. Given that the 

subject sample of 44 farmers completed 25 general lottery questions and 18 agricultural lotteries, 

the panel data include 1,100 and 792 observations under each lottery type.  

The sample broadly represents Michigan corn-soybean farms that rely heavily on farming for 

household income. While the sample was selected purposively, participant farms are spread across 

the southern half of Lower Michigan, which is the region where corn and soybean are cash crops. 

Sample traits largely align with the 2022 Michigan Census of Agriculture (USDA-NASS, 2024a). 

 
2 We have 18 agricultural lotteries as opposed to 25 to minimize cognitive fatigue. The agricultural lottery questions 

required participants to read background information to put the lottery choice into investment contexts. Therefore, 

we went with the 2x2 design experimental design.  
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Table S3 in the supplemental information provides a detailed comparison of sample characteristics 

to the 2022 Michigan Census of Agriculture. We have a similar racial composition compared to 

the state-level data for Michigan on the North American Industry Classification Code referring to 

oilseed and grain farming. Our sample contains more males (98%) than the census (77%), which 

may be because we asked to speak with the primary decisionmaker on crop production. Several 

participants remarked that their wives are business partners who handle the finances as opposed to 

crop production. Our sample also contains more producers in the 35-44 age group than the 2022 

census. By design, the farms in our sample are significantly larger, given that we required 

respondents to operate 300 acres or more, whereas 57% of Michigan farms had under 200 acres.  

Previous literature has found that age, education, and income or wealth can impact risk 

aversion. Given that it is challenging to measure wealth directly, we proxy wealth with income, 

acres in operation, and debt-to-asset ratio. Table 1 provides a breakdown of the main covariates of 

interest for data analysis. Age and acres in operation are continuous variables, while education, 

income, and debt-to-asset ratio are categorical variables. The education levels are defined as less 

than high school, high school diploma, some college, associate’s degree, bachelor’s degree, and 

master’s degree or higher. Income and debt-to-asset ratio are defined as categorical variables, with 

income categories ranging from less than $25,000 to more than $1,000,000 and debt-to-asset ratio 

categories ranging from capital debt between 0% to 9% of current asset value up to capital debt 

greater than current asset value. Fuller details appear in supplemental information Table S3. 



17 
 

Table 1: Summary Statistics for Main Covariates 

Variable Units Average Median Minimum Maximum 

age years 56 57 25 92 

education categorical 
Associate 

degree 

Associate 

degree 

High school 

diploma 

Graduate 

degree 

acres in 

operation 
acres 2,420 1,650 335 17,000 

income categorical 
$200,000-

$500,000 

$200,000-

$500,000 

$25,000-

$50,000 
$1,000,000< 

debt-to-

asset ratio 
categorical  25%-32% 25%-32% 0%-9% 100% 

 

Figure 2 depicts the counties where interview participants operate most of their acres. Given 

our requirement that they grow corn for grain, we recruited farmers in the lower half of Michigan. 

Corn produced in the northern half of Michigan is primarily for dairy silage.  

 

Figure 2: Counties represented in our sample indicated by our participants as the county where 

they operate most of their acres. (Map created by Justin Anderson.) 

Results 

We find that the farmers sampled were risk averse across both domains and all expected utility 

models. Under two of the three expected utility functions, farmers were more averse to risk related 
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to weather-driven crop yield management than to general risky gambles. Analysis of individual 

farmer risk preferences found greater heterogeneity of risk preferences in the weather-driven 

agricultural context than in the general one.  

Starting with the aggregate picture, Table 2 shows the whole-sample probit MLE results 

given the CARA exponential (Eq. 2), CRRA power (Eq. 3), and the nested expo-power (Eq. 4) 

functions with data from both standard, general lotteries and lotteries based on weather-driven 

agricultural investment decisions. In both lottery domains, the CARA 𝛼̂ coefficients are positive, 

displaying risk aversion. Compared to the general lottery CARA coefficient, the one for weather-

driven agricultural investments is larger by an order of magnitude, implying that farmers display 

higher risk aversion when making decisions about weather risk to crop revenue. While both of the 

CARA model 𝛼̂ estimates are quite small, these magnitudes are typical for this model (Raskin & 

Cochran, 1986).  

Table 2: Whole-Sample Probit Models of Lottery Choices Given CARA Exponential, 

CRRA Power, and Nested RRA and ARA Expo-Power Functions. 

 CARA  CRRA Nested RRA and ARA 

 𝛼̂ 𝑟̂ 𝛼̂ 𝑟̂ 

General 
7.67e-6*** 

(3.79e-7) 

0.862*** 

(0.007) 

-0.295*** 

(0.002) 

0.852*** 

(0.003) 

Agricultural 
4.60e-5*** 

(6.36e-7) 

0.890*** 

(0.023) 

0.041*** 

(0.007) 

0.641*** 

(0.029) 

Log-pseudolikelihood    

General -749.37 -865.01 -694.85 

Agricultural -693.09 -662.61 -662.34 

Note: Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.10 

 

The aggregate CRRA results likewise show risk aversion in both lottery domains. However, 

their 95% confidence intervals overlap, so we cannot reject the possibility that the risk aversion 
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coefficients, 𝑟̂, are equal. The magnitude of these CRRA 𝑟̂ estimates matches estimates in the 

literature (Lilleholt, 2019).  

The whole-sample results for the expo-power functional form (Table 2) indicate that 

participants display both relative and absolute risk aversion. Notwithstanding the negative 

coefficient estimate for α in the expo-power function3, the associated index of absolute risk 

aversion (Eq. S2) is positive over the full range of lottery choice values offered (Figure S13 in 

Supplemental Information). Indeed, the expo-power estimates of the index of relative risk aversion 

(Eq. S3) over the range of lottery choice values reveals that are not only are they positive in both 

domains, but they are also much larger in the agricultural than the general domain.  

In order to compare levels of risk aversion between the two domains at the individual level, 

we first conducted choice-of-model tests among the three expected utility functional forms. Wald 

tests gave evidence for preferring the CRRA form for nearly all individuals in both the general and 

the weather-driven agricultural lotteries (see Tables S4, S5, and S6, as well as accompanying text 

in Supplemental Information). The CRRA model ranks first, followed by the expo-power model, 

while the CARA model places last. Given the evidence from these individual-level analyses, we 

focus the remainder of the Results section on estimates from the CRRA power model of 

exponential utility. 

In comparing the frequency distributions of the CRRA 𝑟̂ coefficient estimates in the two 

domains, the most striking feature is the much wider dispersion of risk aversion levels in the 

context of weather-driven agricultural lotteries. Whereas the 𝑟̂ values range from 0.68 to 0.97 in 

the general lotteries, they span 0.56 to 1.02 in the weather risk-driven agricultural lotteries (Figure 

 
3 Note that the interpretations of the coefficient values of the expo-power utility function are not equivalent to those 

of the exponential or power utility functions, given the Arrow-Pratt Indexes for the expo-power function do not 

reduce to constant terms. Hence the need to compute values, as in Figure S13. 
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3).  The two frequency distributions of CRRA 𝑟̂ coefficient estimates with bin sizes of 0.025 differ 

at the 0.10 significance level, based on a χ2 test. Reflecting this, the standard deviation of the 𝑟̂ 

estimates is 0.066 for the general domain versus 0.125 for the weather-driven agricultural one.  

Central tendencies differ little between the general and agricultural frequency distributions in 

Figure 3. This finding should not surprise, given the small difference between CRRA 𝑟̂ estimates 

from the aggregate sample in Table 2. The median 𝑟̂ values for the general and agricultural 

distributions of individual farmer estimates are 0.855 and 0.843, respectively. The mean from the 

agricultural domain is also slightly lower (0.810) than the general domain (0.843), reflecting the 

left-skewed tail in the weather-driven agricultural context (Figure 3). 

 

Figure 3: A comparison of estimated r values at the individual-level for both lottery domains. 

To understand what is driving differences in participants’ risk aversion measures, we test our 

second hypothesis and estimate CRRA risk preference parameters as functions of demographic 
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and farm characteristics following Eq. (8). The preferred specification shown in Table 3 was the 

most parsimonious that was directly comparable across general and agricultural lottery samples. 

(Results for alternative specifications are provided in supplemental information Tables S8 and S9.)  

Table 3: Probit Model of Lottery Choices Given CRRA Power Function, 44 Michigan 

Corn-Soybean Farmers, 2022-23. 

 General Lottery Agricultural Lottery 

Constant 
0.862*** 

(0.007) 

0.556*** 

(0.089) 

0.890*** 

(0.023) 

0.759* 

(0.446) 

age --- 
0.009*** 

(0.002) 
--- 

-0.006 

(0.016) 

age2 --- 
-6.39e-5*** 

(1.89e-5) 
--- 

6.45e-5 

(1.61e-4) 

education level --- 
-0.003 

(0.005) 
--- 

0.032 

(0.019) 

acres operated --- 
-3.60e-6*** 

(1.35e-6) 
--- 

-1.70e-5*** 

(6.02e-6) 

income --- 
0.007 

(0.005) 
--- 

0.039 

(0.029) 

Log-

pseudolikelihood 
-865.01 -849.29 -731.43 -702.12 

Note: Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.10 

 

Both the general and the agricultural lottery results reveal that demographic and farm resource 

variables significantly influence risk preferences (Table 3). But both models also reveal clear risk 

aversion inherent to the decision maker, as captured by the constant terms in the specifications that 

include covariates.  

Two farmer traits influenced the risk aversion estimates. Wealth mattered in both lottery 

domains, with acres operated decreasing the degree of relative risk aversion in the preferred model. 

Although, the acres operated effect was not robust across all specifications, it was significant and 

negative in the two agricultural models where it appeared in linear form as well as one of the two 
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general models where it appeared in linear form. Our sample’s average acreage in operation is 

2,420 acres, and the median is 1,650 acres. The coefficient estimates in Table 3 imply that an 

increase of 1,000 in acres operated is, on average, associated with a .65% decrease in risk aversion 

in the general lottery domain and a 2.24% decrease in the agricultural lottery domain. In both 

lottery domains, the levels of education and income do not impact risk aversion estimates. 

The general lottery results show a clear quadratic age effect across all specifications, though 

the agricultural lottery results do not. The results for the general lottery domain imply that on 

average, risk aversion increases by about 2.33% as a farmer ages from 50 to 60 years old. However, 

the quadratic term means that risk aversion is increasing at a decreasing rate. Once the risk aversion 

estimate reaches its maximum at 70 years old, an increase in the average farmer’s age from 70 to 

80 years results in a 0.67% decrease in risk aversion.  

With and without covariates included, the results in Table 3 indicate that we cannot reject the 

possibility that the risk coefficients, r, are equal across lottery types at a 5% significance level. The 

coefficient estimates in Table 3 along with evidence from the dispersion of risk aversion levels 

suggest that differences between general and agricultural domains are driven by individual traits, 

notably age and wealth. This could explain why we see stronger evidence that farmers are more 

risk averse in the agricultural domain for the aggregate CARA and expo-power functions as shown 

in Table 2. 

Discussion and Conclusion 

In order to understand farmer risk attitudes in the context of changing climate, we compare risk 

preferences elicited from general versus weather-driven agricultural lottery domains. The general 

domain simply asks respondents to choose between pairs of risky gambles. Given predictions of 

increased incidence of seasonal drought and excess moisture, the agricultural domain focuses on 
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investments in water management, including drainage tile to remove excess water, irrigation and 

drought-tolerant seed varieties to manage insufficient water, and crop insurance to provide revenue 

protection. 

We find that the climate context matters. In our aggregate sample of 44 respondents, farmers 

responded differently to risk in the context of weather-driven agricultural risk than in the general, 

abstract domain. While not evident under the CRRA function, they showed greater risk aversion 

in the agricultural domain under CARA function (Table 2). Under the expo-power function, where 

risk aversion levels vary with lottery payout levels, farmers consistently displayed greater risk 

aversion in the context of weather-driven agricultural investments compared to the general domain. 

This finding reinforces the message from Hudson et al. (2005), who found agricultural producers 

in Mississippi to be averse to crop yield and price risk, but risk-seeking behavior in a context-free 

auction. Our evidence about risk behavior differences between weather-driven agricultural and 

general settings is also consistent with Menapace et al. (2016) who determined that Italian apple 

producers’ crop insurance purchases were better explained by risk preferences elicited from 

lotteries in the context of farm income explain farmer than elicitations from lotteries with no 

agricultural framing.  

On risk attitudes in the whole-sample analysis, we find first that Michigan corn-soybean 

farmers are risk averse across all three expected utility functions evaluated (constant absolute risk 

aversion [CARA], constant relative risk aversion [CRRA], and expo-power). This finding is 

consistent with the preponderance of evidence from past studies that elicited risk attitudes of 

farmers in the United States (Barham et al., 2014; Hellerstein et al., 2013) and in Europe (Iyer et 

al., 2020; Meissner et al., 2023).  

By estimating individual utility functions, we can compare the distributions of risk attitudes as 
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well as the determinants of those attitudes between general and climate-related agricultural 

domains. Based on prior choice-of-model tests, we found that the CRRA function could not be 

rejected as equivalent to the expo-power function, whereas the CARA function was 

overwhelmingly rejected as less informative. 

The frequency distribution of CRRA risk aversion coefficients was broader for agricultural 

investments than for general lottery choices. With 𝑟̂ coefficient estimates ranging 0.68 to 0.97 in 

the general lotteries and 0.56 to 1.02 in the weather risk-driven agricultural lotteries, our findings 

correspond to the risk averse and highly risk averse ranges where Holt and Laury (2002) found 

45% of their subjects’ choices to fall in their 20x stakes lottery. The ranges overlap heavily with 

seven of the ten distributions of European farmer risk preferences reported by Garcia et al. (2024), 

although the mean 𝑟̂ values here are higher (more risk averse) than the means reported there. 

Upon re-estimation of CRRA coefficients as a function of age, education, wealth (proxied by 

acres operated), and income, we find that wealth matters in both the general and the agricultural 

domains. Specifically, we find decreasing relative risk aversion as a function of acres operated. 

This suggests that operators of larger farms, which are less vulnerable to bad outcomes, exhibit 

less risk aversion. Their level of risk aversion decreases faster for risky agricultural decisions than 

for general ones (albeit from a higher starting level, represented by the constant in these models) 

(Table 3). Other studies have also found evidence that wealth and risk aversion are negatively 

correlated (Holt & Laury, 2002; Meissner et al., 2023; Wik et al., 2004).  

In the general domain (but not in the agricultural one), we find also that risk attitudes evolve 

with age. Risk aversion increases at a decreasing rate up to age 70, declining after that point. This 

pattern has been found elsewhere in the United States and in Spain (Ackert et al., 2009; Picazo‐

Tadeo & Wall, 2011), and it may be related to changing financial goals and vulnerability over a 
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farmer’s life cycle. A young farmer may aim to expand the farm operation, taking on substantial 

mortgage debt while also facing the financial obligations of a growing family. Farmers who have 

persisted in business past age 70 may have accomplished many of their goals and become more 

tolerant of financial risk. Additional work has separated risk preferences and loss aversion, with 

Tanaka et al. (2010) finding a negative relationship between age and risk aversion while Meissner 

et al. (2023) find a positive relationship between age and risk aversion but a negative relationship 

with loss aversion.  

We do not find a significant relationship between education and risk preferences. This could 

be due to its mixed effect on risk attitudes, with some studies finding positive effects (Vieider et 

al., 2019; Von Gaudecker et al., 2011) while others have found negative effects (Donkers et al., 

2001; Gächter et al., 2022; Harrison et al., 2007). 

Two features of the experimental design invited robustness checks. First, the general lottery 

questions always preceded the agricultural ones. In order to determine whether the order of 

presentation affected risk aversion coefficient estimates, we estimated individual CRRA 

parameters from the first 13 general lotteries presented and compare them to those from the last 

12 presented in Table S7 of the supplemental material. We find no evidence of ordering effects. 

Second, the general lotteries included losses among the outcomes, whereas the agricultural 

lotteries did not. To evaluate the effect of omitted losses on coefficient estimates, we estimated the 

whole-sample CRRA parameter from the subset of 10 general lotteries where all outcomes were 

positive amounts. The estimated value of 0.820 (s.d. 0.012) is lower than both the general CRRA 

estimate of 0.862 (0.007) and the agricultural CRRA estimate of 0.890 (0.023). While this finding 

indicates that omission of losses has a significant effect on coefficient estimates, that effect is to 

depress them. As the omission of losses leads to underestimation of CRRA risk aversion and one 
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key finding is that risk aversion is slightly greater in the weather-driven agricultural domain, it 

appears that this finding would have been even stronger had we included losses in the agricultural 

lotteries. 

The chief limitations of this research stem from the sample, which is small and not randomly 

selected. This is not uncommon for complex economic experiments on risk attitudes, especially 

when targeting a specific group of individuals such as farmers (Brunette et al., 2013; Cerroni, 

2020; Hellerstein et al., 2013; Tevenart & Brunette, 2021). However, it remains a shortcoming, 

despite being mitigated by reasonably good tracking with the broader population of Michigan corn-

soybean farmers as reported in the 2022 Census of Agriculture. The study was limited to corn-

soybean farmers in Michigan, but growers of these crops have a large footprint in the wider scheme 

of things, as grain and oilseed farmers manage two-third of cropland in Michigan (67%) and in the 

United States as a whole (67%) (USDA-NASS, 2024a, 2024b).  

As agricultural policy makers contemplate how to support farmers in confronting climate 

change, these findings offer three insights. First, farmers appear slightly more averse to risk in the 

context of decisions about agricultural investments related to climate risk than in a general domain 

that does not bear on their livelihood. Second, risk attitudes toward agricultural investments vary 

widely, so there is no one-size-fits-all policy prescription. Third, farmers display decreasing 

relative risk aversion: Those who operate large acreages are closer to being risk-neutral profit 

maximizers than smaller scale farmers. Hence, policies aimed at smaller scale farmers may build 

upon the assumption of risk aversion. However, policies aimed at large scale farmers—who 

operate a large share of U.S. acreage in commodity crops like corn and soybean (MacDonald et 

al., 2018)—should focus more on expected profitability, rather than down-side risk. 
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Future research into farmer risk attitudes and climate change adaptation would benefit by both 

broadening the data on risk preferences and applying the results to subjective probability 

distributions. The work reported here could be broadened by extending data collection over a wider 

agricultural geography where farmers face more varied climate conditions. A larger data set with 

greater data variability would likely enable testing a wider range of utility functions that includes 

variants of prospect theory (Eisele et al., 2021; Kahneman & Tversky, 1979; Tversky & 

Kahneman, 1992; Wakker, 2010). A more diverse geography could also potentially parse more 

clearly the determinants of risk attitudes. 

A second valuable extension of this research would be to apply its estimates of risk aversion 

to climate change-related decisions. Subjective probability distributions of crop yields play an 

important role in adaptive management decisions. Past research by Menapace et al. (2013) found 

farmers’ risk attitudes to affect how they estimated the probability of crop loss from pests. A 

worthwhile extension would be to evaluate whether and how farmer risk attitudes affect the way 

they perceive climate-driven changes in crop yield probability distributions.  

Moving on to how risk aversion affects climate change adaptation decisions, how and how 

much does farmer risk aversion affect adaptive management decisions related to climate change? 

Studies have analyzed the relationship between risk aversion in decision making and technology 

adoption (Barham et al., 2014; Gilboa et al., 2008; Marra et al., 2003; Marra & Carlson, 2002). An 

important next step is to explore how risk attitudes affect the adoption of climate change adaptation 

technologies. 
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SUPPLEMENTAL INFORMATION 

S1: Lottery Experiments 

Experimental Procedures 

Before beginning the general lottery-based experiment, we presented the participants with a 

consent form that provided information regarding the survey, participation payment, voluntary 

participation, and confidentiality of responses. The survey's introduction includes two general 

lottery examples to introduce the lottery framework and explain the conversion for the lottery 

payment. In addition to the $50 participation payment, we provide participants with a $40 

endowment from which they can earn or lose money. We present the 25 general lottery pairs in a 

random order to prevent ordering effects, and they include payoffs that are both positive, both 

negative, and a mix of the two. After completing the general and agricultural lottery sections, the 

random number generator built into Qualtrics selects a number from one to 25 to decide the general 

lottery question. We then see whether the participant chooses Lottery A or B. Qualtrics also 

generates a random number between one and 100 to represent the binding outcome within the 

chosen lottery.  

For example, suppose the randomly drawn lottery question includes Lottery A, which offers 

50% odds of winning $50,000 versus 50% odds of winning $20,000, and Lottery B, which offers 

20% odds of winning $100,000 versus 80% odds of winning $10,000. We see that the participant 

selected Lottery B, depicted below. If the randomly generated outcome number falls between 1 

and 20, the first payoff of $100,000 is binding. Similarly, if the randomly generated outcome 

number falls between 21 and 100, the second payoff of $10,000 is binding. 
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Figure S1: Example of general lottery outcome.  

We divide the experimental payoffs by 4,000 to convert the lottery outcomes to real dollars 

that impact the participants’ final payment. Therefore, by choosing Lottery B of the selected 

question, with an outcome number of 11 and the binding payoff of $100,000, the participant would 

receive $25. If the binding outcome is negative, we would subtract the converted payoff from the 

$40 endowment. The participants can potentially lose all of the $40 endowment or win up to $40 

in addition to the endowment, meaning the minimum payment is the $50 participation payment, 

and the maximum is $130. 
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Table S1: General Lottery Set 

Lottery A  Lottery B 

Payoff Probability Payoff Probability  Payoff Probability Payoff Probability 

$10,000 35% $90,000 65%  $20,000 30% $50,000 70% 

$160,000 15% $60,000 85%  $110,000 70% $70,000 30% 

$80,000 20% $20,000 80%  $50,000 75% $10,000 25% 

$120,000 80% $40,000 20%  $150,000 20% $80,000 80% 

$40,000 65% $10,000 35%  $25,000 70% $15,000 30% 

-$90,000 65% -$10,000 35%  -$50,000 70% -$20,000 30% 

-$160,000 15% -$60,000 85%  -$110,000 70% -$70,000 30% 

-$80,000 20% -$20,000 80%  -$50,000 75% -$10,000 25% 

-$120,000 80% -$40,000 20%  -$150,000 20% -$80,000 80% 

-$40,000 65% -$10,000 35%  -$25,000 70% -$15,000 30% 

$100,000 40% -$80,000 60%  $10,000 25% -$40,000 75% 

$80,000 60% -$100,000 40%  -$10,000 25% $65,000 75% 

$20,000 20% -$100,000 80%  -$40,000 80% -$110,000 20% 

-$20,000 20% $100,000 80%  $40,000 80% $110,000 20% 

-$30,000 60% $40,000 40%  -$15,000 30% $5,000 70% 

$80,000 5% $20,000 95%  $50,000 50% $10,000 50% 

$80,000 10% $20,000 90%  $60,000 50% $10,000 50% 

$100,000 95% $40,000 5%  $120,000 40% $50,000 60% 

$100,000 90% $40,000 10%  $120,000 45% $50,000 55% 

$50,000 50% $20,000 50%  $100,000 20% $10,000 80% 

-$80,000 5% -$20,000 95%  -$50,000 50% -$10,000 50% 

-$80,000 10% -$20,000 90%  -$60,000 50% -$10,000 50% 

-$100,000 95% -$40,000 5%  -$120,000 40% -$50,000 60% 

-$100,000 90% -$40,000 10%  -$120,000 45% -$50,000 55% 

-$50,000 50% -$20,000 50%  -$100,000 20% -$10,000 80% 
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General Lottery Example Questions 

 

 

 

Figure S2: Survey instructions and an example for general lottery questions. 
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Figure S3: Example of a general lottery question with all positive payoffs. 

 

Figure S4: Example of a general lottery question with all negative payoffs. 
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Figure S5: Example of a general lottery question with all mixed payoffs. 
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Table S2: Agricultural Lottery Set 

 Invest  Do not invest 

 Payoff Probability Payoff Probability  Payoff Probability Payoff Probability 

$4/bu          

Drainage $ 21,600 100% --- ---  $20,000 30% $24,000 70% 

Drainage $ 21,200 10% $22,400 90%  $20,000 10% $24,000 90% 

Drainage $ 21,600 100% --- ---  $20,000 15% $24,000 85% 

Drainage $ 21,200 25% $22,400 75%  $20,000 25% $24,000 75% 

Irrigation $ 16,500 10% $17,200 90%  $16,300 10% $24,000 90% 

Irrigation $ 16,350 15% $17,850 85%  $16,300 15% $24,000 85% 

Irrigation $ 16,500 25% $17,200 75%  $16,300 25% $24,000 75% 

Irrigation $ 16,350 30% $17,850 70%  $16,300 30% $24,000 70% 

DT seeds $ 17,840 15% $23,840 85%  $16,300 15% $24,000 85% 

DT seeds $ 17,840 25% $23,840 75%  $16,300 25% $24,000 75% 

Crop 

Insurance $ 17,800 35% $22,600 65%  $16,800 35% $24,000 65% 

Crop 

Insurance 
$ 17,000 15% $23,000 85%  $16,800 15% $24,000 85% 

Crop 

Insurance 
$ 17,000 30% $23,000 70%  $16,800 30% $24,000 70% 

Crop 

Insurance 

 $ 

17,800  
20% $22,600 80%  $16,800 20% $24,000 80% 

$8/bu          

Irrigation $43,450 10% $44,800 90%  $32,600 10% $48,000 90% 

Irrigation $42,500 15% $45,450 85%  $32,600 15% $48,000 85% 

Irrigation $42,500 30% $45,450 70%  $32,600 30% $48,000 70% 

Irrigation $43,450 25% $44,800 75%  $32,600 25% $48,000 75% 
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Agricultural Lottery Introduction  

 

 

Figure S6: Survey instructions for agricultural lottery section with explanation of lottery 

framing. 
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Agricultural Lottery Example Questions 

 

 

Figure S7: Example of drainage investment question in agricultural lottery experiment. 
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Figure S8: Example of irrigation investment question in agricultural lottery experiment. 

Please note that we increased the base revenue in the case of investing in irrigation to account for 

the yield boost associated with the investment.  

In the event of a severe drought (10% chance), you will earn $16,500 in gross crop revenue.  

$24,000*1.12 = $26,900 in gross crop revenue minus the annual investment of $10,400. 

 

In the event of no severe drought (90% chance), you will earn $17,200 in gross crop revenue.  

$24,000*1.15 = $27,600 in gross crop revenue minus the annual investment of $10,400. 
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Figure S9: Example of crop insurance investment question in agricultural lottery experiment. 
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Figure S10: Example of drought tolerant seed investment question in agricultural lottery 

experiment. 
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Figure S11: Higher corn price irrigation investment instructions. 

 

 

Figure S12: Example of a higher corn price irrigation investment question in agricultural lottery 

experiment. 
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S2: Conceptual Framework for Nested Expo-Power 

The expo-power function (Eq. S1) allows for nested tests, considering that it represents 

constant absolute risk aversion (CARA) as 𝑟 → 0 and constant relative risk aversion (CRRA) as 

𝛼 → 0. 

 
𝑈(𝑤) =  

1 − 𝑒𝑥𝑝 (−𝛼𝑤1−𝑟)

𝛼
 

(S1) 

These reductions can be shown by the Arrow-Pratt Indexes. The Arrow-Pratt Index of Absolute 

Risk Aversion is represented by 

 
𝐴(𝑤) =

−𝑈"(𝑤)

𝑈′(𝑤)
=  

𝑟 +  𝛼(1 − 𝑟)𝑤1−𝑟

𝑤
. 

(S2) 

When 𝑟 = 0, Eq. (S2) reduces to the CARA coefficient, 𝛼, with A’(w) = 0.  

The Arrow-Pratt Index of Relative Risk Aversion is represented by  

 
𝑅(𝑤) =

−𝑈"(𝑤)𝑤

𝑈′(𝑤)
=  𝑟 +  𝛼(1 − 𝑟)𝑤1−𝑟. 

(S3) 

When 𝛼 = 0, Eq. (S3) reduces to the CRRA coefficient, 𝑟, and R’(w) = 0.  
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S3: Summary Statistics 

We pull state-level statistics from the 2022 Michigan Census of Agriculture and focus on the 

North American Industry Classification Code referring to oilseed and grain farming (USDA-

NASS, 2024). We compare the characteristics of our sample population and that of the 2022 

Michigan Census of Agriculture in Table S3. 

Table S3 Producer and Farm Characteristics: Sample (n=44 in 2023) vs. Michigan 

Agricultural Census (2022) 

 Sample MI Ag Census 

Male 98% 77% 

Age   

Under 25 0% 1% 

25 to 34 5% 8% 

35 to 44 25% 13% 

45 to 54 14% 14% 

55 to 64 25% 25% 

65 to 74 20% 23% 

75 and older 11% 15% 

Ethnicity   

Caucasian 98% 99% 

Hispanic or Latino 2% 1% 

Education   

High school diploma 25% --- 

Some college 20% --- 

Associate degree 16% --- 

Bachelor’s degree 27% --- 

Master’s degree or higher 11% --- 

Acres harvested   

1 to 199 0% 57% 

200 to 499 7% 20% 

500 to 999 7% 13% 

1,000 to 1,999 52% 7% 

2,000 or more 34% 4% 

Average acres operated 2420 533 

Total acres operated 106,499 5,333,742 
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S4: Model Comparison and Selection 

By modeling the Arrow-Pratt indexes of Absolute and Relative Risk Aversion (S2-S3), we can 

see how estimates of risk preferences in the full sample change as a function of the estimated 𝛼 

and r values and lottery payoff levels. Figure S13 displays how the changing absolute risk aversion 

estimates from the expo-power function compared to their CARA and CRRA counterparts in both 

the general and agricultural lottery domains. The top two panes of the figure show point estimates 

and 95% confidence intervals (CIs) for the absolute risk aversion index, while the bottom two 

panes show the same for the relative risk aversion index. The horizontal lines depict the CARA 

and CRRA estimates from Table 2 of the main text for comparison with the expo-power estimates.  

 

Figure S13: Risk aversion index estimates under the expo-power function and their 95% 

confidence intervals for a) absolute risk aversion under the general lottery setting, b) absolute risk 

aversion in the agricultural lottery setting, c) relative risk aversion in the general lottery setting, 

and d) relative risk aversion in the agricultural lottery setting. The solid horizontal lines represent 

the corresponding risk aversion estimates for the CRRA and CARA functions for comparison.  
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Side by side comparison of panels A vs B and C vs D reveals higher risk aversion in the 

agricultural than the general domain. The larger confidence intervals on the right side (panels B 

and D) sides shows that risk aversion levels in the agricultural domain are more heterogeneous 

than in the general domain (panels A and C). Overall, the negative exponential utility functions 

reveal that in the agricultural lottery setting, the relative risk aversion measure is consistently both 

greater and more heterogeneous than in the general lottery setting. In the context of weather-driven, 

agricultural yield risk, respondents are more risk averse than in a general (context-free) lottery by 

both measures. 

After estimating each model for the whole sample, we performed individual-level analyses to 

measure the heterogeneity of risk preferences across the participants. We estimated risk 

preferences for each participant under the CARA exponential (Eq. 4), CRRA power (Eq. 5), and 

nested expo-power (Eq. 6) functions. Table S4 summarizes the individual-level analyses for each 

utility model under the two lottery settings. We report the total number of significant individual-

level estimates for the CARA exponential (Eq. 4) and CRRA power (Eq. 5) functions in the 

corresponding columns. We then estimated the nested expo-power (Eq. 6) at the individual-level 

and performed Wald tests to evaluate whether risk attitudes could be represented by either of the 

two more parsimonious utility models. As noted above, rejection of the null hypothesis (Eq. 6) 

provides evidence of the null hypothesis of CARA (if 𝑟̂𝑛 = 0) or CRRA (if 𝛼̂𝑛= 0). Table S5 reports 

the full set of Wald Test results at the individual level.  

While the whole sample estimates provide evidence of non-constant risk preferences, the 

results at the individual level in Table S4 provide strong empirical evidence of CRRA preferences 

in both lottery settings. For the general lottery data, Wald tests of individual models found CRRA 

to fit in all 39 cases that converged and to be preferred to the negative exponential in 38 of the 41 
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cases that converged. By contrast the CARA model fit only 2 of 44 cases that converged and was 

never preferred to the nested expo-power. For the agricultural lottery data, the CRRA model fits in 

35 of the 42 cases that converged and in 17 of the 32 nested expo-power cases that converged. The 

CARA model fits in just 7 of 42 cases that converged and in 1 of the 32 instances where the expo-

power function converged. No individual model with general lottery data and just four with 

agricultural lottery data failed to reject the null hypothesis that the nested expo-power model was 

superior to both CARA and CRRA.  

Table S4: Individual Farmer Probit Models of Lottery Choices: Wald Test Results for the 

CARA, CRRA, and Nested Expo-Power Functions 

 General Lotteries Agricultural Lotteries 

Wald Test results by model 

type when max likelihood 

estimation converged 

CARA 

(Eq. 4) 

CRRA 

(Eq. 5) 

Nested 

(Eq. 6) 

CARA 

(Eq. 4) 

CRRA 

(Eq. 5) 

Nested 

(Eq. 6) 

Converged 44 39 41 42 42 32 

No significant results 42 0 3 35 7 10 

Evidence of CARA 2 --- 0 7 --- 1 

Evidence of CRRA --- 39 38 --- 35 17 

Evidence of ARA & RRA --- --- 0 --- --- 4 

Did not converge 0 5 3 2 2 12 

 

While Table S4 summarizes the Wald test results, Table S5 provides the full Wald test results for 

the 44 individuals in our sample.  
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Table S5: Wald Test Results for Utility Model Selection at the Individual-Level 

 Nested RRA and ARA 

  α r 

id General Agricultural General Agricultural 

1 0.37 --- 109.18*** --- 

2 0.51 0.25 143.45*** 3.98*** 

3 0.12 1.83 60.14*** 10.84*** 

4 0.07 3.15* 16.58*** 5.76** 

5 0.11 0.15 55.14*** 0.86 

6 0.00 --- 0.00 --- 

7 0.10 0.92 26.68*** 3.41 

8 0.73 0.35 50.40*** 2.84* 

9 2.63 0.02 42.00*** 3.01* 

10 1.03 5.45** 296.71*** 6.24** 

11 0.16 1.69 45.91*** 16.25*** 

12 0.10 0.27 32.49*** 1.88 

13 0.10 --- 
2,389.54**

* 
--- 

14 2.35 0.87 24.71*** 2.68* 

15 0.93 0.02 17.57*** 4.93** 

16 0.06 0.00 16.86*** 5.21** 

17 0.00 --- 0.66 --- 

18 0.00 0.28 0.00 2.41 

19 1.07 0.10 17.01*** 25.25*** 

20 0.11 1.63 26.98*** 4.85** 

21 0.15 --- 75.56*** --- 

22 0.88 --- 362.79*** --- 

23 0.28 2.70* 87.38*** 9.39*** 

24 0.02 0.11 7.92*** 1.32 

25 0.07 --- 19.79*** --- 
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Table S5 (cont’d) 

26 0.14 --- 40.09*** --- 

27 0.00 --- 48.45*** --- 

28 0.10 0.79 54.89*** 4.37** 

29 0.28 2.42 93.81*** 136.71*** 

30 0.12 0.00 63.80*** 3.14* 

31 0.18 0.65 78.54*** 15.80*** 

32 --- 0.02 --- 4.67** 

33 1.38 --- 23.75*** --- 

34 1.51 --- 20.46*** --- 

35 --- 0.18 --- 1.87 

36 0.15 --- 65.62*** --- 

37 0.41 136.71* 123.80*** 2.19 

38 --- 0.14 --- 27.84*** 

39 0.24 0.00 97.80*** 0.64 

40 0.16 0.00 74.21*** 0.74 

41 1.20 0.01 19.70*** 0.06 

42 0.03 0.49 10.10*** 3.62* 

43 0.11 0.00 47.44*** 1.18 

44 0.07 6.79*** 14.74*** 7.70*** 

Note: Standard errors in parentheses, *** p < 0.01, ** p 

< 0.05, * p < 0.10 

 

In selecting the most suitable functional form for estimation of risk preferences, we followed the 

criteria of Lau (1986) and Frank et al. (1990), which include computational facility, flexibility, 

domain of applicability, parsimony of parameters, and readily interpreted parameters. Table S6 

compares the models across these conceptual criteria along with results on goodness of fit at both 

aggregate and individual farmer levels. Based on these criteria, the CRRA model ranks first, 

followed by the expo-power model; the CARA model places last. 
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Table S6: Choice of Model Criteria: CRRA Preferred in Individual Models and Overall 

Criterion CARA CRRA Expo-Power 

Computational facility High High Medium 

Domain of applicability 
Constant risk 

aversion 

Constant risk 

aversion 

DARA, DRRA, 

IARA, IRRA, 

CARA, CRRA 

Flexibility Limited Limited High 

Parsimony of parameters High High Medium 

Ease of interpretation High High Medium 

General: Goodness-of-fit, 

Aggregate (Wald) 
Reject*** Reject*** Fail to reject 

General: Goodness-of-fit, 

Individual (Wald) 
38 of 41 reject* 0 of 41 reject* N/A 

Agricultural: Goodness-

of-fit, Aggregate (Wald) 
Reject*** Reject*** Fail to reject 

Agricultural: Goodness-

of-fit, Individual (Wald) 
21 of 32 reject* 5 of 32 reject* N/A 

Note: We omit theoretical consistency and factual conformity, given that all models 

perform equally well.  
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S5: Robustness Checks 

To test the potential for path dependency and learning effects, we compare risk preference 

parameter estimations of the CRRA function from the first half of the general lottery questions to 

the second half. For each individual, we identify the order in which they saw the general lottery 

questions and estimate individual risk preference parameters for the first 13 and the last 12 general 

lottery questions separately. The results are provided in Table S7. Of the 27 individual parameter 

estimations that converged for both sets of lottery questions, only one has evidence of a significant 

difference between the first and second half of lottery questions (ID 25).  

Table S7: Testing Ordering Effect of General Lottery Questions to Identify Potential Path 

Dependency 

 𝑟̂ 

ID Overall First 13 Last 12 

1 
0.836*** 

(0.773, 0.900) 
No convergence 

0.927*** 

(0.741, 1.113) 

2 
0.765*** 

(0.708, 0.821) 

0.751*** 

(0.668, 0.834) 

0.775*** 

(0.691, 0.859) 

3 
0.880*** 

(0.822, 0.937) 

3.200 

(-1,541, 1,547) 

0.743*** 

(0.671, 0.815) 

4 
0.738*** 

(0.691, 0.784) 
No convergence 

0.767*** 

(0.690, 0.844) 

5 
0.878*** 

(0.818, 0.937) 

0.882*** 

(0.818, 0.945) 

0.859*** 

(0.733, 0.985) 

6 
0.999*** 

(0.994, 1.006) 

0.999*** 

(0.999, 1.000) 

1.067** 

(0.165, 1.968) 

7 
0.771*** 

(0.712, 0.831) 

0.796*** 

(0.713, 0.879) 

0.713*** 

(0.655, 0.771) 

8 
1.168 

(-0.829, 3.164) 

1.168 

(-0.829, 3.164) 

0.999*** 

(0.999, 1.000) 

9 
0.926*** 

(0.773, 1.079) 

0.994*** 

(0.692, 1.196) 

0.909*** 

(0.720, 1.097) 

10 
0.753*** 

(0.702, 0.804) 

0.802*** 

(0.714, 0.890) 

0.681*** 

(0.641, 0.721) 

11 
0.782*** 

(0.695, 0.870) 

0.782*** 

(0.695, 0.870) 

0.781*** 

(0.688, 0.875) 
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Table S7 (cont’d) 

12 
0.820*** 

(0.750, 0.890) 

0.824*** 

(0.742, 0.942) 

0.759*** 

(0.668, 0.850) 

13 
0.821*** 

(0.746, 0.897) 

0.838*** 

(0.709, 0.967) 

0.810*** 

(0.721, 0.900) 

14 
0.855*** 

(0.764, 0.946) 

0.877*** 

(0.709, 1.046) 

0.837*** 

(0.720, 0.954) 

15 
0.932*** 

(0.765, 1.098) 

0.931*** 

(0.615, 1.246) 

4.720 

(-12,752, 12,761) 

16 
0.765*** 

(0.709, 0.822) 

0.754*** 

(0.680, 0.827) 

0.780*** 

(0.683, 0.876) 

17 
No 

convergence 

0.780*** 

(0.683, 0.876) 
No convergence 

18 
0.955*** 

(0.748, 1.162) 

0.957*** 

(0.623, 1.291) 

0.954*** 

(0.690, 1.218) 

19 
0.914*** 

(0.772, 1.056) 

0.873*** 

(0.755, 0.992) 

1.582 

(-22.939, 26.102) 

20 
0.7222*** 

(0.674, 0.770) 

0.736*** 

(0.671, 0.801) 

0.687*** 

(0.604, 0.770) 

21 
0.886*** 

(0.832, 0.940) 

0.843*** 

(0.709, 0.976) 

0.889*** 

(0.835, 0.943) 

22 
0.857*** 

(0.764, 0.949) 

0.897*** 

(0.754, 1.040) 

0.794*** 

(0.707, 0.881) 

23 
0.840*** 

(0.777, 0.904) 

0.864*** 

(0.794, 0.933) 

0.772*** 

0.700, 0.844) 

24 
0.827*** 

(0.755, 0.898) 

0.827*** 

(0.733, 0.921) 

0.826*** 

(0.717, 0.935) 

25* 
0.762*** 

(0.709, 0.815) 

0.675*** 

(0.636, 0.713) 

0.813*** 

(0.726, 0.901) 

26 
0.804*** 

(0.734, 0.875) 

0.778*** 

(0.698, 0.858) 

0.832*** 

(0.721, 0.944) 

27 
0.766*** 

(0.710, 0.823) 

0.771*** 

(0.693, 0.850) 

0.760*** 

(0.676, 0.844) 

28 
0.882*** 

(0.825, 0.938) 

1.738 

(-40.321, 

43.797) 

0.795*** 

(0.682, 0.909) 

29 
0.855*** 

(0.790, 0.919) 

0.767*** 

(0.687, 0.847) 

0.873*** 

(0.808, 0.937) 

30 
0.882*** 

(0.824, 0.938) 

0.786*** 

(0.693, 0.879) 

0.786*** 

(0.693, 0.879) 

31 
0.877*** 

(0.818, 0.936) 

9.021 

(-48,085, 

48,103) 

0.765*** 

(0.674, 0.856) 
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Table S7 (cont’d) 

32 
0.893*** 

(0.845, 0.942) 

0.870*** 

(0.801, 0.939) 

6.396 

(-337,457, 337,470) 

33 
0.977*** 

(0.725, 1.228) 

0.938*** 

(0.744, 1.132) 

0.999*** 

(0.999, 1.000) 

34 
0.907*** 

(0.775, 1.038) 

0.926*** 

(0.729, 1.124) 

0.878*** 

(0.712, 1.044) 

35 
0.892*** 

(0.842, 0.943) 

0.999*** 

(0.827, 1.171) 

0.881*** 

(0.819, 0.944) 

36 
0.874*** 

(0.815, 0.934) 

0.749*** 

(0.665, 0.833) 

1.106 

(-0.273, 2.484) 

37 
0.843*** 

(0.778, 0.908) 

0.771*** 

(0.689, 0.854) 

0.860*** 

(0.791, 0.929) 

38 
0.999*** 

(0.999, 1.000) 

0.999*** 

(0.999, 1.000) 

0.840*** 

(0.713, 0.966) 

39 
0.878*** 

(0.821, 0.935) 

1.632 

(-38.502, 

41.765) 

0.858*** 

(0.785, 0.931) 

40 
0.881*** 

(0.825, 0.938) 

0.782*** 

(0.689, 0.875) 

1.956 

(-110.674, 114.545) 

41 
0.999*** 

(0.975, 1.025) 

1.029*** 

(0.417, 1.641) 

0.999*** 

(0.999, 1.000) 

42 
0.816*** 

(0.744, 0.888) 

0.789*** 

(0.686, 0.893) 

0.831*** 

(0.738, 0.924) 

43 
0.868*** 

(0.807, 0.930) 

0.848*** 

(0.761, 0.936) 

0.910*** 

(0.735, 1.085) 

44 
0.685*** 

(0.648, 0.722) 

0.729*** 

(0.658, 0.800) 
No convergence 

 

 

Tables S8 and S9 provide alternative results with different combinations of explanatory variables 

for comparison to Table 3 of the main text. 
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Table S8: Alternative Specifications of Probit Model (Eq. 5) of Lottery Choices Given Power Function for General Lotteries 

 

Preferred 

Specification (1) (2) (3) (4) 

Constant 
0.556*** 

(0.089) 

0.552*** 

(0.092) 

0.557*** 

(0.092) 

0.607*** 

(0.060) 

0.611*** 

(0.063) 

age 
0.009*** 

(0.002) 

0.009*** 

(0.002) 

0.009*** 

(0.002) 

0.009*** 

(0.002) 

0.008*** 

(0.002) 

age2 -6.39e-5*** 

(1.89e-5) 

-6.52e-5*** 

(2.00e-5) 

-6.52e-5*** 

(1.97e-5) 

-5.82e-5*** 

(1.65e-5) 

-5.62e-5*** 

(1.65e-5) 

education level 
-0.003 

(0.005) 

-0.003 

(0.005) 

-0.005 

(0.005) 

-0.008 

(0.005) 

-0.007 

(0.005) 

acres operating 
-3.60e-6*** 

(1.35e-6) 

-1.63e-6 

(8.78e-6) 
--- --- 

-1.80e-6 

(2.18e-6) 

acres operating2 --- 
-1.47e-10 

(4.80e-10) 
--- --- --- 

income level 
0.007 

(0.005) 

0.008 

(0.006) 

0.004 

(0.006) 
--- --- 

debt-to-asset ratio --- 
-0.002 

(0.002) 
--- 

-0.001 

(0.002) 
--- 

Log-

pseudolikelihood 
-830.51 -829.26 -831.57 -849.14 -849.29 

Wald test of 

omitted variables 
1.68 --- 1.78 1.83 3.24 

Note: Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.10 
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Table S9: Alternative Specifications of Probit Model (Eq. 5) of Lottery Choices Given Power Function for Agricultural 

Lotteries 

 

Preferred 

Specification (1) (2) (3) (4) 

Constant 
0.759* 

(0.446) 

0.518 

(0.484) 

0.704** 

(0.324) 

0.986*** 

(0.178) 

1.189*** 

(0.262) 

age 
-0.006 

(0.016) 

0.002 

(0.012) 

-0.002 

(0.009) 

-0.008 

(0.007) 

-0.016 

(0.011) 

age2 6.45e-5 

1.61e-5) 

-1.73e-5 

(1.09e-5) 

2.35e-5 

(8.56e-5) 

8.68e-5 

(7.39e-5) 

1.63e-4 

(1.18e-4) 

education level 
0.032 

(0.019) 

0.037 

(0.026) 

0.030 

(0.020) 

0.015 

(0.016) 

0.016 

(0.013) 

acres operating 
-1.70e-5*** 

(6.02e-6) 

3.45e-5 

(5.82e-5) 
--- --- 

-1.25e-5*** 

(4.54e-6) 

acres operating2 --- 
-2.92e-9 

(3.28e-9) 
--- --- --- 

income level 
0.039 

(0.029) 

0.025 

(0.023) 

0.024 

(0.025) 
--- --- 

debt-to-asset ratio --- 
-0.001 

(0.008) 
--- 

-0.003 

(0.006) 
--- 

Log-

pseudolikelihood 
-702.12 -699.15 -705.96 -726.52 -724.20 

Wald test of 

omitted variables 
0.99 --- 0.44 1.34 2.39 

Note: Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.10 
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